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SCALE method for single-cell ATAC-seq analysis
via latent feature extraction
Lei Xiong 1, Kui Xu1, Kang Tian1, Yanqiu Shao1, Lei Tang1, Ge Gao2,3, Michael Zhang4,5,6, Tao Jiang 7,8 &

Qiangfeng Cliff Zhang 1*

Single-cell ATAC-seq (scATAC-seq) profiles the chromatin accessibility landscape at single

cell level, thus revealing cell-to-cell variability in gene regulation. However, the high dimen-

sionality and sparsity of scATAC-seq data often complicate the analysis. Here, we introduce a

method for analyzing scATAC-seq data, called Single-Cell ATAC-seq analysis via Latent

feature Extraction (SCALE). SCALE combines a deep generative framework and a probabil-

istic Gaussian Mixture Model to learn latent features that accurately characterize scATAC-

seq data. We validate SCALE on datasets generated on different platforms with different

protocols, and having different overall data qualities. SCALE substantially outperforms the

other tools in all aspects of scATAC-seq data analysis, including visualization, clustering, and

denoising and imputation. Importantly, SCALE also generates interpretable features that

directly link to cell populations, and can potentially reveal batch effects in scATAC-seq

experiments.
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Accessible regions within chromatin often contain important
genomic elements for transcription factor binding and gene
regulation1. Assay for Transposase-Accessible Chromatin

using sequencing (ATAC-seq) is an efficient method to probe
genome-wide open chromatin sites, using the Tn5 transposase to
tag them with sequencing adapters2. In particular, single-cell
ATAC-seq (scATAC-seq) reveals chromatin-accessibility varia-
tions at the single-cell level, and can be used to uncover the
mechanisms regulating cell-to-cell heterogeneity3,4. However, in an
scATAC-seq experiment, each open chromatin site of a diploid-
genome single cell only has one or two opportunities to be cap-
tured. Normally, only a few thousand distinct reads (versus many
thousands of possible open positions) are obtained per cell, thus
resulting in many bona fide open chromatin sites of the cell that
lack sequencing data signals (i.e., peaks). The analysis of scATAC-
seq data hence suffers from the curse of “missingness” in addition
to high dimensionality3.

Many computational approaches have been designed to tackle
high-dimensional and sparse genomic sequencing data, especially
single-cell RNA-seq (scRNA-Seq) data. Dimensionality reduction
techniques such as principal component analysis (PCA)5 and
t-distributed stochastic neighbor embedding (t-SNE)6 are fre-
quently employed to map raw data into a lower dimensional
space, which is particularly useful for visual inspecting the dis-
tribution of input data. Clustering based on the full expression
spectrum or extracted features can be performed to identify
specific cell types and states, as well as gene sets that share
common biological functions7–10. The imputation of missing
expression values is also often carried out to mitigate the loss of
information caused by dropouts in scRNA-seq data11,12.

Direct applications of these scRNA-seq analysis methods to
scATAC-seq data, however, may not be suitable due to the close-
to-binary nature and increased sparsity of the data (Supplemen-
tary Fig. 1). A recent method specifically developed for scATAC-
seq data analysis, chromVAR13, evaluates groups of peaks that
share the same motifs or functional annotations together.
Another method, scABC, weighs cells by sequencing depth and
applies weighted K-medoid clustering to reduce the impact of
missing values14. To refine the clustering, it then calculates a
landmark for each cluster and assigns cells to the closest land-
marks based on the Spearman correlation. However, each method
suffers notable caveats: chromVAR only analyzes peaks in groups
and lacks the resolution of individual peaks, whereas scABC
heavily depends on landmark samples with high sequencing
depths, and the Spearman rank can be ill-defined for data with
many missing values (in particular for scATAC-seq data).
Recently a newly developed method called cisTopic applied latent
Dirichlet allocation to model on scATAC-seq data to identify cis-
regulatory topics and simultaneously cluster cells and accessible
regions based on the cell-topic and region-topic distributions15.

Expressive deep generative models have emerged as a powerful
framework to model the distribution of high-dimensional data.
One of the most popular of such methods, the variational auto-
encoder (VAE), estimates the data distribution and learns a latent
distribution from the observed data through a recognition model
(encoder) and a generative model (decoder)16. It does this by
maximizing the similarity of the calibrated data (output by the
decoder) with the input data and minimizing the Kullback-
Leibler divergence of the approximate from the true posteriors16.
VAE could be applied to data embedding and clustering based on
the low-dimensional latent representation of the input high-
dimensional data17. Recently, a method called scVI adapted VAE
for scRNA-seq data analysis18. However, the standard VAE
employed by scVI uses a single isotropic multivariable Gaussian
distribution over the latent variables and often underfits sparse
data19. A tighter estimation of the posterior distribution could

greatly improve the power of VAE in fitting and analyzing sparse
data19. Applying Gaussian Mixture Model (GMM) as the prior
over the latent variables has been used in unsupervised clustering
and to generate highly realistic samples by learning more disen-
tangled and interpretable latent representations20–22.

Here, we introduce SCALE (Single-Cell ATAC-seq analysis via
Latent feature Extraction), a method that combines the VAE
framework with the Gaussian Mixture Model (GMM, a prob-
abilistic model to estimate observed data with a mixture of
Gaussian distributions). We validated the effectiveness of SCALE
in extracting latent features that characterize the distributions of
input scATAC-seq data on multiple different datasets generated
on different platforms with different protocols, and of different
overall data qualities. We then used the latent features to cluster
cell mixtures into subpopulations, and to denoise and impute
missing values in scATAC-seq data. We compared the perfor-
mance of SCALE with other widely-used dimensionality reduc-
tion techniques, as well as with the state-of-art scRNA-seq and
scATAC-seq analysis tools. We found that SCALE substantially
outperforms the other tools in all aspects of scATAC-seq data
analysis. It is even comparable to sophisticated experimental
technologies with additional steps (e.g., Pi-ATAC23, which uses
protein labeling as an aid in defining cell identifies) in correctly
revealing cell types and their specific regulatory motifs in a tumor
sample.

Results
The SCALE model and validation datasets. SCALE combines
the variational autoencoder (VAE) and the Gaussian Mixture
Model (GMM) to model the distribution of high-dimensional
sparse scATAC-seq data (Fig. 1). SCALE models the input
scATAC-seq data x as a joint distribution p x; z; cð Þ where c is one
of predefined K clusters corresponding to a component of GMM,
z is the latent variable obtained by z ¼ μz þ σz � ϵ, where μz and
σz are learned by the encoder network from x, and ε is sampled
from Nð0; IÞ16. Since z is conditioned on c, p x; z; cð Þ can be
written as p xjzð Þp zjcð ÞpðcÞ where p(c) is a discrete distribution of
K predefined clusters, p(z|c) follows a mixture of Gaussians dis-
tribution with a mean μc and a variance σc for each component
corresponding to a cluster c, and p(x|z) is a multivariable Ber-
noulli distribution modeled by the decoder network (Fig. 1). In
the SCALE framework, each cell xi is first transformed into a
d-dimensional vector of latent features zi on the GMM manifold
by an encoder network and then reconstructed back through a
decoder network with the original dimensionality to represent the
chromatin openness at each peak in each cell. The latent features
that capture the characteristics of scATAC-seq data are then
visualized in the low-dimensional space with t-SNE, and used to
cluster single cells with various clustering methods, e.g., K-means.

We constrained the hyper-parameters of SCALE on the
Leukemia scATAC-seq dataset and found SCALE is insensitive
to the encoder structure and the dimension of latent features
(Supplementary Table 1). The SCALE model with default
parameters can be accessed in the Online Method. We then
tested the model by using the GM12878/HEK293T, the
GM12878/HL-60, and the InSilico datasets3,4,24, and two other
recently published Splenocyte and Forebrain datasets25,26. The
Leukemia dataset is derived from a mixture of monocytes (Mono)
and lymphoid-primed multipotent progenitors (LMPP) isolated
from a healthy human donor, and leukemia stem cells
(SU070_LSC, SU353_LSC) and blast cells (SU070_Leuk,
SU353_Blast) isolated from two patients with acute myeloid
leukemia24. The GM12878/HEK293T dataset and the GM12878/
HL-60 dataset are respective mixtures of two commonly-used cell
lines22. The InSilico dataset is an in silico mixture constructed by
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computationally combining six individual scATAC-seq experi-
ments that were separately performed on a different cell line3,11.
Note that these four datasets were the same ones used to validate
scABC14. The more recent Splenocyte dataset25 is derived from a
mixture of mouse splenocytes (after red blood cell removal) and
the Forebrain dataset26 is derived from P56 mouse forebrain cells.
The six datasets cover scATAC-seq data generated from both
microfluidics-based and cellular indexing platforms, and the
distributions of the number of peaks in each single cell vary
substantially in different datasets (Supplementary Fig. 1). How-
ever, they always have a high level of data sparsity compared to
the aggregation of peaks from all single cells in each dataset
(Supplementary Table. 2).

SCALE identifies cell types by clustering on latent features. We
examined SCALE’s ability to uncover features that characterize
scATAC-seq data distributions. By default, SCALE extracts 10
features from the input data. For comparison, we also applied
PCA, scVI and cisTopic to reduce the input data to 10 dimen-
sions. In the comparison, we also included Cicero27, a scATAC-
seq data analysis tool for predicting cis-regulatory interactions
and building single-cell trajectories from scATAC-seq data, and
TF-IDF a transformation for performing dimension reduction
and clustering28. We then visualized the extracted features from
these tools as well as the raw data with t-SNE. In general, the
feature embeddings of SCALE and cisTopic were better separated
between cell types, whereas the embeddings of PCA, scVI, Cicero,
TF-IDF and the raw data overlapped between some cell types
(Fig. 2a, Supplementary Fig. 2).

SCALE can also reveal the distance between different cell
subpopulations and sometimes suggested their developmental
trajectory in UMAP visualization29 (Supplementary Fig. 3). For
example, in the Forebrain dataset the three clusters of excitatory
neuron cells (EX1, EX2, and EX3) are close to each other in the
latent space. For the Splenocyte dataset, the different T-cell
subpopulations are in the neighborhood, the B cells form another
bigger group, and the two types of natural killer cells also cluster
closely. For the Leukemia dataset, Mono and LMPP cells are the
most dissimilar in leukemia evolution and they were indeed the
farthest separated. LSCs exhibit strong similarity to LMPPs30,
consistent with that the LSC cells (LSC_SU070, LSC_SU353) were
close to the LMPP cells in the embedding. Finally, the blast cells
(Blast_SU070 and Blast_SU353) showed a bimodal distribution,
with some more differentiated blasts closer to monocytes31,32.

We then applied K-means clustering on the SCALE-extracted
latent features and assessed the clustering accuracy by compar-
ing the results with scABC, scVI, cisTopic, and SC333, another
widely-used clustering method for scRNA-seq data. SCALE
displayed the overall best performance on all five real
experimental mixture datasets, and was nearly as accurate as
scABC and cisTopic on the InSilico dataset (Fig. 2b, Supple-
mentary Fig. 4). The newly developed cisTopic generally
performed pretty well on all datasets, with the overall clustering
performance only slightly lower than SCALE, but it misclassified
a few clusters on the Splenocyte dataset. We also compared with
TF-IDF and Cicero on clustering. TF-IDF performed well on
most datasets (although not as good as SCALE) except on the
Forebrain dataset. However, Cicero did not perform well on
most datasets; indeed, data visualization and clustering are not
major goals of Cicero. On the Forebrain dataset, cluster
assignments of SCALE were the closest to the reference cell
types. Due to the sparsity of data, the Pearson and Spearman
correlations were both ill-defined (Supplementary Fig. 5a),
which directly led to poor clustering for SC3 where most cells
collapsed into one group. Although the VAE-based method scVI
did not suffer from the problem of ill-defined cell distance, it
misclassified three subgroups of cells (s1, s2, s3 labeled on the
confusion matrix. Supplementary Fig. 5b).

To identify the cause of the misclustering by scVI, we searched
for the most similar cell types for the three subgroups (s1, s2, s3).
We aggregated the peak profiles of each cell type or subgroup to
form a representing meta-cell and calculated the similarities
among the meta-cells. As expected, s1 is the most similar to EX2,
s2 the most similar to EX3, and s3 to AC (astrocyte) in the
original data (Supplementary Fig. 5c). Both scVI and SCALE
model the distribution of scATAC peak profiles to remove noise
and to impute missing values (discussed in detail in the next
section). We found that, consistent with the clustering results, this
data calibration by scVI actually made s1, s2, and s3 cells less
similar to the original cell types of EX2, EX3, and AC,
respectively. On the contrary, SCALE retained the similarities
of the three subgroups to their original cell types. Strikingly, when
removing the GMM restriction from the overall framework but
keeping the other part of the network the same, the degenerated
SCALE yield performance was similar to that of a regular VAE,
like scVI (Supplementary Fig 5d). Thus, introducing GMM as the
prior to restrict the data structure provides SCALE with greater
power for fitting sparse data than regular VAE using single
Gaussian as the prior.

GMM

Encoder

Raw data

Decoder

Visualization
clustering

Cells Cells

P
ea

ks

P
ea

ks

Enhanced data

�∼N (0,I)

�c

�z

�c

�z

c

zx x

Fig. 1 Overview of the SCALE framework. SCALE consists of an encoder and a decoder in the VAE framework. The encoder is a four-layer neural network
(3200–1600–800–400) and the decoder is a network of only one layer with 10-dimensional latent variables (features) directly connected to the output.
The latent variables are on the GMM manifold parameterized by μc and σc
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Finally, we tested whether SCALE is robust with respect to data
sparsity by randomly dropping scATAC-seq values in the raw
datasets down to zero. We compared the clustering accuracy of
SCALE and other tools at different dropping rates (10–90%),
measured by the adjusted Rand Index (ARI), Normalized Mutual
Information (NMI) and micro F1 score (Methods). We found
that SCALE displayed only a moderate decrease in clustering
accuracy with increased data corruption until at about the
corruption level of 0.6, and was robust for all datasets
(Supplementary Fig. 6). In general, scABC, SC3, and scVI also
showed robustness to data corruption; however, the overall
clustering accuracies were much lower on some datasets (e.g., SC3
failed on the Forebrain dataset and scVI failed on the GM12878/
HEK293T and the GM12878/HL-60 datasets). On the Forebrain
dataset, the ARI scores of SCALE dropped from 0.668 using the
raw data to 0.448 on using the data with 30% corruption, and
scABC and scVI dropped from 0.315 to 0.222 and from 0.448 to
0.388, respectively.

Finally we also provide a method to help users choose the
optimal number of clusters based on the Tracy-Widom distribu-
tion34 (Methods), which could often produce an estimate of the
number of clusters close to that of the references (Supplementary
Fig. 7) and generate clustering results similar to the reference sets
(Supplementary Fig. 7).

SCALE reduces noise and recovers missing peaks. An important
feature of SCALE is the ability to accurately estimate the real
distribution of scATAC-seq data, which usually contains both
noise and a large number of missing values. The estimate could be
used to remove noise and restore missing data (Fig. 1). We
evaluated the calibration efficiency of SCALE on both real and
simulated datasets. Since no such tool is currently available for
scATAC-seq data, we compared SCALE with scImpute, SAVER,
MAGIC, and scVI, four state-of-the-art scRNA-seq imputation
methods (Fig. 3a).

We first evaluated the ability of SCALE to remove noise and to
recover missing values on real scATAC-seq datasets. A challenge

of analyzing real data is that the ground truth data without any
corruption is unknown. However, if we average all single cells of
the same biological cell type, the resulted meta-cell will be a good
approximate to those single cells. SCALE performed better than
all scRNA-seq imputation methods in all scATAC-seq datasets, in
that it achieved the highest correlation of the single cells with the
corresponding meta-cell for each cell type (Fig. 3a, Supplemen-
tary Fig. 8), indicating that it obtained a better estimate of the real
scATAC-seq data distribution. For most cases, scImpute was very
stable and among the best comparing with other scRNA-seq
imputation methods, and SAVER performed well on denser
datasets (InSilico, Splenocyte) but deteriorated on sparser
datasets. MAGIC and scVI might have underfit the sparse input
data and the imputed data substantially deviated from it
(Supplementary Fig. 9), which may reflect that the two powerful
tools that are optimized to scRNA-seq data imputation may not
fit for scATAC-seq data analysis.

It is important to note that the data calibration of SCALE was
obtained at the same time of data modeling and clustering, i.e.,
without knowing the original type of each cell. So it could not
simply average all single cells of the same cell type to reconstruct
the peak so that they resemble the reference meta-cell. Also
importantly, SCALE achieved a high correlation with the meta-
cells while maintaining a similar level of variation within each cell
population (see the variation of correlation coefficients in Fig. 3a
and Supplementary Fig. 8). Indeed, SCALE retained the original
data structure (intra-correlation within the imputed data) and
recovered the original peak profiles (inter-correlation with the
raw data) in the process of data regularization by GMM
(Supplementary Fig. 9).

The imputation of SCALE could strengthen the distinct
patterns of cluster-specific peaks by filling missing values and
removing potential noise (Supplementary Fig. 10), which
improves downstream analysis, for example the identification of
cell-type-specific motifs and transcription factors by chromVAR.
We demonstrated this feature with the Forebrain dataset. We first
followed the method used by Cusanovich et. al. to identify
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Fig. 2 Feature embedding and clustering. a t-SNE visualization of the raw data and the extracted features from PCA, scVI, cisTopic, and SCALE of the
Forebrain dataset. For comparison, SCALE, PCA, and scVI all performed dimension reduction to ten dimensions before applying t-SNE while the raw data
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differentially accessible sites with the “binomialff” test of Monocle
2 package28. At 1% FDR threshold, we identified 4100 differential
accessible sites across the eight reference clusters of the Forebrain
dataset. We then used chromVAR to search for motifs enriched
in the differential sites in the raw and the imputed data,
respectively. Overall, the patterns of different cell types are more
distinct for these differentially accessible sites in the imputed than
in the raw data (Supplementary Fig. 11a). And embedding on the
imputed data shows better-defined clusters (each well corre-
sponds to a subtype with biological definition) than on the raw
data (Fig. 3b, Supplementary Fig. 11b).

We found that the imputed data can greatly improve the results
of chromVAR analysis by identifying more motifs (increased
from 52 motifs to 105). For example, chromVAR analysis on the
imputed data, but not on the raw data, identified the motifs Mafb
and Hoxd9 enriched in the MG (macroglia) cluster (Supplemen-
tary Fig. 11c–d). It was recently reported that Mafb contributes to
the activation of microglia35. It also identified Hoxd9 enriched in
IN (inhibitory neuron) from the imputed but not the raw data.
Similarly, we found that Dlx2, Lhx8, Arx, and Neurog1 are much
more significantly enriched in the, respectively, clusters in the
imputed data (Supplementary Fig. 11c-d). Dlx2, Lhx8, and Arx
are important components in the MGE (medial ganglionic
eminence) pathway of forebrain development36, and Neurog1 is
required for excitatory neurons in the cerebral cortex37.

We then introduced further corruption to the real data by
randomly dropping out peaks at different rates (Methods). At all

corruption rates, SCALE performed the best, in that the calibrated
data most closely correlated with the original meta-cells
(Supplementary Fig. 12). We observed similar trends for the
other scRNA-seq imputation tools as above, confirming
the effectiveness of SCALE in enhancing scATAC-seq data. We
further tested the impact of missingness on generative model of
imputation by calculating the confusion score (Methods) to
evaluate the ability to preserve the original structure (inter and
intra-correlation of meta-cells) (Supplementary Fig. 13). We
found that the effect was minimal when the corruption level was
lower than about 0.5, and after that threshold, the generative
model was less capable of preserving the original structure
(Supplementary Fig. 13b).

We subsequently tested the calibration accuracy on a simulated
dataset. We constructed the dataset by first generating reference
scATAC-seq data consisting of three clusters, each containing 100
peaks with no missing values, then randomly dropping out peaks
and introducing noise (Methods, Supplementary Fig. 14a). As we
knew the ground truth data of each single cell, we could quantify
the efficiency of all tools by calculating peak-wise and cell-wise
correlations of each calibrated single cell with its original ground
truth. At all corruption rates, SCALE recovered the original data
most accurately (Supplementary Fig. 14b–c). On the other hand,
although scImpute could also recover the missing values in most
cases, it messed up two clusters at the 0.2 corruption rate and was
unable to remove the noise. SAVER and scVI smoothed both the
signal and noise simultaneously and only recovered missing
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values to some degree. MAGIC performed very well at low
corruption rates, but apparently over-smoothed the data and
removed true signals along with noise at high levels of data
corruption.

SCALE reveals cell types and their specific motifs. Next, we used
SCALE to analyze a dataset generated by a recently developed
technology, protein-indexed single-cell assay of transposase-
accessible chromatin-seq (Pi-ATAC), which uses protein label-
ing to help define cell identities23. Dissecting complex cell mix-
tures of in vivo biological samples may be challenging. By
simultaneously characterizing protein markers and epigenetic
landscapes in the same individual cells, Pi-ATAC provides an
effective approach to tackle the problem. The Breast Tumor
dataset is derived from a mouse breast tumor sample, including
two plates of tumor cells (Epcam+) and another two plates of
tumor-infiltrating immune cells (CD45+), isolated by protein
labeling and FACS sorting. In the original study, a set of motifs
was used to project the Epcam+ and CD45+ -specific chromatin
features with t-SNE, and it was difficult to separate these two cell
types computationally (Supplementary Fig. 15a). However, we
found that SCALE was able to separate the two cell types well,
better than PCA and scVI in latent embedding (Fig. 4a). On
clustering, SCALE also yielded results the closest to the protein-
index labels, better than scVI and scABC, whereas SC3 poorly
distinguished the two cell types (Fig. 4b). Although cisTopic
grouped the cells well in the embedding, it misclassified parts of
CD45+ cells into Epcam+ cells. SCALE thus can reveal cell types
within complex tissues based only on scATAC-seq data, with
performance comparable to sophisticated experimental technol-
ogies like Pi-ATAC.

We validated the biological significance of the cell clusters
based on Pi-ATAC peaks. For each cluster, we calculated the top
1000 peaks with the highest specificity score as type-specific peaks
(Methods, Supplementary Fig. 15b). We then used Homer38 to
identify transcription factor binding motifs that were enriched in
the type-specific peaks. We removed the common motifs
enriched in both CD45+ cells and Epcam+ cells, and kept those
that were enriched in only one cell type. We found that CD45+
cells were enriched for immune-specific motifs Maz, Pu.1-Irf,
Irf8, Runx1, Elk4, Nfy, Elf3, and SpiB binding motifs. These
findings are consistent with the role of Runx1 in maintenance of
haematopoietic stem cells (HSC) and that knockout of Runx1
results in defective T- and B-lymphocyte development39. Nfy
promotes the expression of the crucial immune responsive gene
Major Histocompatibility Complex (MHC)40. Epcam+ cells were
enriched for tumor-related motifs Klf14, Mitf, Ets1, Nrf2, and
Nrf1 binding motifs. Ets1 is frequently overexpressed in breast
cancer and associated with invasiveness41, whereas Nrf2 is a key
signature for breast cancer cell proliferation and metastasis42

(Fig. 4c). Thus, SCALE analysis of the Breast Tumor data revealed
biologically relevant cis-elements for gene regulation.

SCALE disentangles biological cell types and batch effects. In
addition to tighter estimates of the multimodal input data, by
pushing each dimension to learn a separate Gaussian distribution,
GMM has another advantage in that it leads to latent repre-
sentations that are more structured and disentangled, and thus
more interpretable21. In SCALE, as each feature is directly con-
nected with output peaks, it can be assessed by the most weighted
connections (Methods, Supplementary Fig. 16a). For example, in
the Leukemia dataset, dimensions 9 of the extracted features
captured peaks specific to the Mono cell type and enriched reg-
ulatory elements related to immune-related “biological process”
(BP, Methods) (Supplementary Fig. 16b). In the Forebrain

dataset, feature 3 characterized the AC (astrocyte) and the OC
(oligodendrocyte) cell types, enriched elements related to “glial
cell differentiation” (Supplementary Fig. 16c). In the Splenocyte
dataset, features 4 and 7 portrayed two complementary sets of cell
types (Supplementary Fig. 16d), with feature 4 enriched with B
cell-related processes like “regulation of cell morphogenesis” and
“myeloid leukocyte activation and differentiation”, and feature 7
enriched with T cell-related processes such as “immune response”
and “regulation of cell killing” (Supplementary Fig. 16d). These
data suggest that the features learned by the model of SCALE are
disentangled and can shed light on the biological significance.

Most interestingly, we found that SCALE could possibly reveal
features corresponding to potential batch effects in the input data.
For example, the Breast Tumor dataset is derived from
experiments performed separately on two plates of Epcam+
tumor cell samples and two plates of CD45+ tumor-infiltrating
immune cells. Although SCALE successfully clustered the two cell
types, the data structure in the low-dimensional space also
revealed bias towards different plates (Fig. 5a). We carefully
analyzed the SCALE-extracted features (Fig. 5b) and noticed that
while some, e.g., features 1 and 6, were well-correlated to
biological cell types, the others, e.g., features 2, 4, 8, and 10, more
or less corresponded to independent plates, or, e.g., features 3 and
5, displayed biased distribution not related to cell types. Using the
plate-related features (i.e., features 2, 3, 4, 5, 8, and 10) for data
embedding, we found that the cells were separated by plates, but
not by types. On the other hand, if we used the other plate-
independent features (i.e., features 1, 6, 7, and 9), we found that
indeed the cells of different plates of the same types more evenly
distributed in the cluster (Fig. 5a). We further checked the
represented peaks of these features and its biological significance
(Supplementary Fig. 16e). Most of plate-related features have no
biological relevance, except for peaks of feature 8, which appeared
in one plate of CD45+ cells and are enriched with biological
processes such as “response to cytokine stimulus”. This finding,
however, suggests another possibility in interpreting the “plate
bias” as a real biological difference in the two separate plates of
CD45+ cells that might arise from sorting and cell culture.

We noticed that GM12878 cells in the InSilico dataset contain
four replicates with many peak values much greater than 2. PCA
analysis showed that replicates 1 and 3 were separated in the low-
dimensional space (Supplementary Fig. 17a), suggesting a
possible batch effect. However, the differences in the two
replicates disappeared after we binarized the data, by masking
values greater than 1 to 1 (Supplementary Fig. 17b). On the other
hand, we observed no particular features corresponding to any
batch among the SCALE-extracted features (Supplementary
Fig. 17c). Consequently, in the embedding and clustering results
based on the SCALE-extracted features, the cells of each replicate
were distributed evenly in the low-dimensional space (Supple-
mentary Fig. 17c). We confirmed this result by checking the top
200 specific peaks for each replicate based on raw data and found
no significantly different pattern across replicates (Supplementary
Fig. 17d). The distinction may reflect the different characters of
the two approaches: while PCA is a linear method and sensitive to
quantitative variations, SCALE is non-linear and more stable.
Lastly, we repeated the analysis on the Splenocyte and the
Forebrain datasets—the other two datasets that contain different
experimental batches, and found no batch-related features, and
the cells of different batches were distributed indistinguishably in
the low-dimensional space (Supplementary Figs. 18, 19).

SCALE is scalable to large datasets. We further examined a
mouse single-cell atlas of profiled chromatin accessibility in
~80,000 single cells from 13 adult mouse tissues by sci-ATAC-
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seq28 to investigate whether SCALE works for large datasets. The
atlas study used a computational pipeline to infer 30 cell types
from the dataset by graphic clustering, which were used as
“reference” cell types when benchmarking SCALE. SCALE
worked well on this big dataset and showed a good agreement
with the reference: the overall F1 score was 0.419, and most of the
major reference clusters have a corresponding one identified by

SCALE. Nevertheless, some large reference clusters were split into
two or three small groups (Supplementary Fig. 20).

Finally, we benchmarked the running time and memory usage
of SCALE on different scales of datasets by downsampling a
subset of cells and peaks from the mouse atlas datasets (10,000
peaks and different cell number). We found that SCALE required
a little over 1.5 h and 2 GB of memory to run a dataset, and
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importantly the used computational resource only increased
slightly with the size of datasets (Supplementary Fig. 21).

Discussion
Our work shows that SCALE accurately characterizes the dis-
tribution of high-dimensional and sparse scATAC-seq data by
using a deep generative framework to extract latent features.
SCALE is thus a powerful tool for scATAC-seq data analysis,
including data visualization, clustering, and denoising and
imputation. In all comparisons, SCALE performs much more
favorably than scABC and scRNA-seq tools. Based on the better
clustering assignments and imputation data, we can improve the
discovery of cluster-specific peaks, and regulatory motifs as well,
when combined with tools like Homer38 or chromVAR13.

The success of SCALE can be attributed to the powerful deep
generative framework and the GMM to accurately model the
high-dimensional, sparse, multimodal scATAC-seq data. Similar
to SCALE, a recent scRNA-seq analysis tool scVI also learns
latent representation of scRNA-seq data by aggregating infor-
mation across similar cells using a hierarchical Bayesian model18.
However, SCALE also applies a GMM to overcome the increased
sparsity of scATAC-seq data and more tightly estimate data
distribution, thus achieving higher accuracy than scVI on
scATAC-seq data analysis. It highlights the necessity and
advantage to develop new methods that are optimized for
scATAC-seq data, but not to use scRNA-seq data analysis tools.

An attractive additional observation about SCALE is the
interpretability of the GMMmodel. We showed that SCALE could
possibly capture biological cell-type-related and potential batch-
effect-related latent features in the low-dimensional space. By
excluding batch-related features in embedding and clustering, we
are able to reduce batch effects. Nevertheless, SCALE is not spe-
cifically designed to identify and remove these artifacts from the
input data. In the future, we could improve the model to explicitly
incorporate variables that are designated for the discovery and
removal of batch effects and other possible technical variations.

Methods
Data and preprocessing. Data: The Leukemia dataset is derived from a mixture of
monocytes (Mono) and lymphoid-primed multipotent progenitors (LMPP) iso-
lated from a healthy human donor, and leukemia stem cells (SU070_LSC,
SU353_LSC) and blast cells (SU070_Leuk, SU353_Blast) isolated from two patients
with acute myeloid leukemia24. The GM12878/HEK293T dataset and the
GM12878/HL-60 dataset are respective mixtures of two commonly-used cell lines3.
The InSilico dataset is an in silico mixture constructed by computationally putting
together six individual scATAC-seq experiments separately performed on a dif-
ferent cell line3,11. The Splenocyte dataset25 is derived from a mixture of mouse
splenocytes (after red blood cells removal) and the Forebrain dataset26 is derived
from P56 mouse forebrain cells. The Breast Tumor dataset23 is obtained from a
mouse breast tumor sample, including two plates of tumor cells (Epcam+) and
another two plates of tumor-infiltrating immune cells (CD45+) from protein
labeling and FACS sorting.

Preprocessing: Similar to scABC14, we filtered the scATAC-seq count matrix to
only keep peaks in10 cells with ≥2 reads for the InSilico dataset, the GM12878/
HEK293T dataset, and the GM12878/HL-60 dataset, ≥5 cells with ≥2 reads for the
Leukemia dataset, ≥50 cells with ≥2 reads for the Forebrain dataset, and ≥5 cells
with ≥1 reads for the Breast Tumor dataset. We kept all the peaks for the
Splenocyte dataset. We also only kept cells with read counts ≥(number of filtered
peaks/50). For the InSilico dataset, there were still almost 90,000 peaks after
filtering. For the efficiency of the SCALE model, similar to SC333, we further
removed rare peaks (reads >2 in less than X% of cells) and ubiquitous peaks (reads
≥1 in at least (100–X)% of cells).

The probabilistic model of SCALE. SCALE combines a variational autoencoder
(VAE) and the Gaussian Mixture Model (GMM) to model the input scATAC-seq
data x through a generative process. Given K clusters, corresponding latent variable
z can be obtained through the encoder via the reparameterization then to generate
sample x through the decoder. It can be modeled with a joint distribution p x; z; cð Þ,
where z is the latent variable and c is a categorical variable whose probability is
Discrete (c|π) where P C ¼ jð Þ ¼ πj; π 2 R

K . p(z|c) is mixture of Gaussians dis-
tribution parameterized by μc and σc conditioned on c. Given that x and c are

independently conditioned on z, then joint probability p(x, z, c) can be factorized as:

p x; z; cð Þ ¼ p xjzð Þp zjcð ÞpðcÞ ð1Þ
We define each factorized probability as:

p cð Þ ¼ Discrete cjπð Þ ð2Þ

p zjcð Þ ¼ Nðzjμc; σ2c IÞ ð3Þ

p xjzð Þ ¼ BerðxjμxÞ ð4Þ
The training SCALE is to maximize the log-likelihood of the observed scATAC-

seq data:

logp xð Þ ¼ log
Z

z

X
c
p x; z; cð Þdz ð5Þ

� Eqðz;cjxÞ log
p x; z; cð Þ
qðz; cjxÞ

� �
¼ LELBOðxÞ ð6Þ

which can be transformed to maximize the evidence lower bound (ELBO). The
ELBO can be written with a reconstruction term and a regularization term:

LELBO xð Þ ¼ Eq z;cjxð Þ logpðxjzÞ½ � � DKL qðz; cjxÞjjp z; cð Þð Þ ð7Þ
The reconstruction term encourages the imputed data to be similar to the input

data. The regularization term is a Kullback-Leibeler divergence, which regularizes
the latent variable z to a GMM manifold. And q(z, c|x) and p(x|z) are an encoder
and a decoder, respectively, which can be modeled by two neural networks.

The overall network architecture of SCALE. SCALE consists of an encoder and a
decoder. The encoder is a four-layer neural network (3200–1600–800–400) with
the ReLU activation function. The decoder has no hidden layer but directly con-
nects the ten latent variables (features) to the output layer (peaks) with the Sigmoid
activation function. A GMM model is used to initialize the parameters μc and σc.
The Adam optimizer43 with a 5e-4 weight decay is used to maximize the ELBO.
Mini-batch size is 32. SCALE also provides a quick mode for large datasets with the
encoder structure of two layers (1024–128), and model training with maximum
iterations of 30,000 and early stopping when no improvements in 10 epochs. The
GMM models are constructed with the Python “scikit-learn” package, and the
neural network is implemented with the “pytorch” package.

Visualization. We used t-SNE from the Python “scikit-learn” package to project
the raw data or latent features to 2-dimension with random state as 124. We used
Python package “umap” to visualize the trajectory cell relationships.

Clustering. We used the K-means clustering method from the Python “scikit-
learn” package to cluster the input single cells based on the extracted features. To
repeat the result, we set the random seed to 18.

Evaluation of clustering results. Adjusted Rand Index: The Rand Index (RI)
computes similarity score between two clustering assignments by considering mat-
ched and unmatched assignments pairs independently of the number of clusters. The
Adjusted Rand Index (ARI) score is calculated by “adjust for chance” with RI by:

ARI ¼ RI � Expected RI
max RIð Þ � Expected RI

If given the contingency table, the ARI can also be represented by:

ARI ¼
P

ij
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The ARI score is 0 for random labeling and 1 for perfectly matching.
Normalized mutual information:

NMI ¼ IðP;TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Pð ÞHðTÞp

where P, T are empirical categorical distributions for the predicted and real
clustering, I is the mutual entropy, and H is the Shannon entropy.

F1 score:

score ¼ 2 � precision � recallð Þ=ðprecisionþ recallÞ

Generation and corruption of the simulation dataset. A simulation dataset
consisting of 300 cells and 1000 peaks was generated. The peaks formed three
clusters, with each cluster containing 100 specific peaks. These specific peaks had a
value of 1 or 2 (ratio 1:4) in the cells of the corresponding clusters, and 0 in other
cells. Corrupted datasets were generated by randomly dropping out values at dif-
ferent rates from 0.1 to 0.8, followed by introducing random noise by setting values
as 1 or 2 (ratio 1:4) with the probability of 0.1.
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Identifying differentially accessible sites. We followed Cusanovich et al. 28 and
used “binomiallf” test implemented in Monocle 2 package44 to identify differen-
tially accessible peaks. We set a 1% FDR threshold (Benjamini-Hochberg method)
to decide the peaks were significant for each cluster.

Calculation of the cluster specificity score of a peak. We applied an entropy-
based measure to calculate a cluster specificity score for the association of each
peak with each cluster. In detail, it is defined by comparing the distribution of the
peak pattern with the predefined ideal cluster-specific pattern in which a peak only
appears in one cluster:

score ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Divjensenðp; qÞ

q

while p is the distribution of observed peaks overall samples, and q is the
distribution of predefined pattern for the cluster c,

q ¼ qc11 ; q
c2
2 ; ¼ ; qcnn

� �
s:t qcii ¼ 1; if c1 ¼ c

0; else

	

where Divjensenðp; qÞ is the Jensen divergence distance:

DivJensen p; qð Þ ¼ H
pþ q
2


 �
� H pð Þ þ HðqÞ

2

where H pð Þ is the entropy of peak’s distribution:

H pð Þ ¼ �
Xn
i¼1

pilogðpiÞ

This provides the peak-cluster matrix, and the final cluster specificity score is
the maximal score overall clusters. By default, we defined the top 200 peaks as the
cluster-specific peaks, which were used in the downstream analysis.

Binarization. We transformed the float imputed values to binary ones as below:

imputedi;j ¼
1; if imputedi;j >meanðrawi;:Þ and>meanðraw:;jÞ

0; else

	

where imputed is the imputation matrix, raw is the raw data matrix, i means the ith
peak, j means the jth cell.

Confusion score. We first calculated the inter/intra-correlation matrix, then
transformed the diagonal values of the correlation matrix to:

Correlationdiag ¼ 1� Correlationdiag

Then calculated the mean of the upper triangle of the correlation matrix as the
confusion matrix:

confusion score ¼ meanðCorrelationtriuÞ
A confusion score of “0” means a perfect preservation of the original population.

Features associated peaks. In SCALE, as each feature is directly connected with
output peaks, the feature-peak association can be assessed by the weights of links.
We approximate the distribution of the weights as a Gaussian distribution, and
defined those peaks with weights most deviated from the mean as feature-associated
peaks. By default, we set 2.5 standard deviations from the mean as the cutoff.

Discovery of enriched TFs. We applied findMotifsGenomes.pl from the software
Homer with default parameters on the top 1000 specific peaks of the CD45+ and
the Epcam+ corresponding single-cell clusters, respectively, to search for tran-
scription factor binding motifs. We only considered the motif occurrences with
binomial test P-value ≤ 0.001.

Annotation of genomic elements. We used the GREAT45 algorithm (version 3.0.0)
to perform the gene enrichment analysis by including genomic regions of a basal plus
an extension (1 kb upstream and 0.1 kb downstream with up to 500-kb max extension)
in the search for elements enriched with the GO ‘biological process’ terms.

Prediction of a suitable number of cluster k. We used the number of the
eigenvalues of XTX that are significantly different as the predicted k, where X is the
count matrix. We followed SC3 and calculated the mean and the s.d. of the Tracy-
Widom distribution to determine the threshold:

mean ¼ ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p þ ffiffiffi
p

p
 �2

s:d: ¼ ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p þ ffiffiffi
p

p
 � 1ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p þ 1
p

� �1
3

Where n is the number of peaks and p is the number of cells.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The scATAC-seq in silico mixture data are available in Gene Expression Omnibus (GEO)
under accession number GSE65360. Single-cell data for leukemia mixture is available at
GSE74310, GM12878/HEK293T and GM12878/HL-60 mixtures can be found at
GSE68103, Pi-ATAC Breast Tumor data can be obtained at GSE112091. Splenocyte
mixture can be accessed at ArrayExpress with accession number E-MTAB-6714 and
Forebrain mixture can be accessed at GSE100033. The mouse atlas dataset is available at
http://atlas.gs.washington.edu/mouse-atac. All other relevant data supporting the key
findings of this study are available within the article and its Supplementary Information
files or from the corresponding author upon reasonable request. A reporting summary
for this Article is available as a Supplementary Information file.

Code availability
The SCALE software including documents and tutorial is available on Github (https://
github.com/jsxlei/SCALE).
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