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Online single-cell data integration through
projecting heterogeneous datasets into a
common cell-embedding space

Lei Xiong 1,2,3,8, Kang Tian 1,2,8, Yuzhe Li1,4, Weixi Ning1, Xin Gao 5,6,7 &
Qiangfeng Cliff Zhang 1,2

Computational tools for integrative analyses of diverse single-cell experiments
are facing formidable new challenges including dramatic increases in data
scale, sample heterogeneity, and the need to informatively cross-reference
new data with foundational datasets. Here, we present SCALEX, a deep-
learning method that integrates single-cell data by projecting cells into a
batch-invariant, common cell-embedding space in a truly online manner (i.e.,
without retraining themodel). SCALEX substantially outperforms online iNMF
and other state-of-the-art non-online integration methods on benchmark
single-cell datasets of diverse modalities, (e.g., single-cell RNA sequencing,
scRNA-seq, single-cell assay for transposase-accessible chromatin use
sequencing, scATAC-seq), especially for datasets with partial overlaps, accu-
rately aligning similar cell populations while retaining true biological differ-
ences. We showcase SCALEX’s advantages by constructing continuously
expandable single-cell atlases for human, mouse, and COVID-19 patients, each
assembled from diverse data sources and growing with every new data. The
online data integration capacity and superior performance makes SCALEX
particularly appropriate for large-scale single-cell applications to build upon
previous scientific insights.

Single-cell experiments enable the decomposition of samples into
their constituent, diverse cell-types and cell states1–4. Many computa-
tional tools have been developed for integrative analysis of single-cell
datasets, all seeking to separate biological variations from non-
biological noise, such as batch effects of different donors, condi-
tions, and/or analytical platforms5,6. The scopeof the integration task is
expanding rapidly with technical advances for single-cell studies,
which continue to grow larger and larger in scale, now exceeding 1
million cells in some cases7,8. Moreover, the range of examined sample

types is also increasing, and datasets now often include highly het-
erogenous cell subsets9,10. Most importantly, as single-cell studies
become more routine, new studies should be informatively cross-
referenced to foundational research stuides7,8,11–15. Thus, there is a
growing need for integration tools that can manage single-cell data of
large-scale and complex cell-type compositions while also supporting
accurate alignment to and exploration within existing datasets.

Most current single-cell data integrationmethods (e.g., Seurat16–18,
MNN19, Harmony20, Conos21, Scanorama22, BBKNN23, etc.) are based on
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the searching across batches for cell-correspondence, for instance
similar individual cells or cell anchors/clusters. These methods suffer
from three limitations. First, they are prone to mixing cell populations
that only exist in some batches, which becomes a severe problem for
the integration of complex datasets that contain non-overlapping cell
populations in each batch (i.e., partially overlapping data)16,17. Second,
they require computational resources that increase dramatically as the
number of cells and of batches increase, making these methods
increasingly unsuitable for today’s large-scale single-cell datasets7,8,11–15.
Finally, thesemethods can only remove batch effects from the current
dataset being assessed. Each time a newdataset is added, it requires an
entirely new integration process that changes the existing integration
results of previous studies. This requirement severely limits a tool’s
ability to continuously integrate arriving new single-cell data without
recalculating existing integrations from scratch, a capacity referred to
as “online” data integration24.

Onlinedata integration ability is becoming increasingly crucialwith
today’s single-cell experiments. The recently developed tool, online
iNMF24, an online version of LIGER25, iteratively applies integrative non-
negative matrix factorization (iNMF) to decouple the shared and
dataset-specific factors related to cell identities, and thus is able to
incorporate newdatawith existing datasets on-the-fly. Another recently
developed package, scvi-tools26, combining scVI27 with scArches28,
applies a conditional variational autoencoder (VAE)29 framework to
model the inherent distribution of the input single-cell data for data
integration.However, theconditionalVAEdesignof scVI requiresmodel
augmentation and retraining when integrating new data, meaning that
scVI is not an online method. We want to highlight that this online
integration ability meets a rapidly growing need in the life sciences and
in biomedicine: it enables the alignment of data coming from new
single-cell analyses (from the lab and clinic) into the substantial corpus
of existing knowledge, especially that from previous foundational
single-cell research. Put another way, the online integration capacity
obviates the need to augment and/or retrain models when analyzing
additional datasets, which both preserves hard-won scientific insights
and saves a huge amount of computational resource.

Here, we developed SCALEX as amethod for online integration of
heterogeneous single-cell data based on a VAE framework. The enco-
der of SCALEX is designed to be a data projection function that only
preserves batch-invariant biological data componentswhenprojecting
single-cells. Importantly, the projection function is a generalized one
that requires no retraining on new data, thus allowing SCALEX to
integrate single-cell data in an online manner. Working with an
extensive collection of benchmark datasets, we demonstrate that
SCALEX substantially outperforms online iNMF as well as non-online
single-cell data integration tools, in terms of integration accuracy,
scalability, and computationally efficiency. The advantages make
SCALEX particularly appropriate for the integration and research uti-
lization of today’s single-cell datasets, which continue to grow along
with the ongoing explosion of single-cell studies in biology and
medicine.

Results
SCALEX implements a generalized encoder that enables online
integration of single-cell data
To enable online integration, the fundamental design concept under-
lying SCALEX is to implement a generalized projection function that
disentangles the batch-related components away from the batch-
invariant components of single-cell data and projects the batch-
invariant components into a common cell-embedding space. We pre-
viously applied VAE and designed SCALE (Single-Cell ATAC-seq Ana-
lysis via Latent feature Extraction) to model and analyze single-cell
ATAC-seqdata30.We found that the encoder of SCALEhas thepotential
to disentangle cell-type-related and batch-related features in a low-
dimensional embedding space.

Here, to obtain a generalized encoder for data projection without
retraining, SCALEX includes three specific design elements (Fig. 1a,
Supplementary Fig. 1, “Overview of the SCALEX model” in Methods).
First, SCALEX implements a batch-free encoder that extracts only
biological-related latent features (z) from input single-cell data (x) and
a batch-specific decoder29 that reconstructs the original data from z by
incorporating batch information back during data reconstruction.
Supplying batch information only to the decoder focuses the encoder
exclusively on learning the batch-invariant biological components,
which is crucial for the encoder generalizability. In contrast, scVI
includes a set of batch-conditioned parameters into its encoder, which
restrains the encoder from the generalizability with new batches and
thus precludes online data integration. Second, SCALEX includes a
Domain-Specific Batch Normalization (DSBN)31 layer using multi-
branch Batch Normalization32 in its decoder to support incorpora-
tion of batch-specific variations during single-cell data reconstruction.
Third, the SCALEX encoder employs a mini-batch strategy that sam-
ples data from all batches (instead of a single batch), which more
tightly follows the overall distribution of the input data. Note that each
mini-batch is subjected to a Batch Normalization layer in the encoder
to adjust the deviation of eachmini-batch and to align it to the overall
input distribution.

We conducted extensive analyses of SCALEX hyperparameters
and also tested the specific contributions of each design element by
implementing a set of SCALEX test-variants, each lacking an indi-
vidual or a combination of the design elements, and evaluating their
performance for single-cell data integration (“Ablation studies
using test-variants of SCALEX” in Methods). We found that each
design element is crucial for the integration performance of SCA-
LEX. More importantly, the combination of these design elements
renders the encoder of SCALEX a generalized function capable of
accurate projection of single cell data from different batches into a
batch-invariant cell-embedding space, making SCALEX a truly
online data integration method.

SCALEX integration is substantiallymore accurate than state-of-
the-art single-cell data integration methods
We extensively assessed the basic data integration performance of
SCALEX, following the evaluative framework proposed in a recent
comparative study33. We examined multiple well-curated scRNA-seq
datasets, including human pancreas (eight batches of five studies)34–38,
heart (two batches of one study)39 and liver (two studies)40,41; as well as
human non-small-cell lung cancer (NSCLC, four studies)42–45 and per-
ipheral blood mononuclear cells (PBMC; two batches assayed by two
different protocols)16. Our comparison includedonline iNMFandother
state-of-the-art non-online single-cell data integration methods,
including Seurat v3, Harmony, MNN, Conos, BBKNN, Scanorama,
LIGER (i.e., batch iNMF), and scVI. We evaluated the integration per-
formance of these tools based on the benchmark datasets by Uniform
Manifold Approximation and Projection (UMAP)46 embedding visuali-
zation as well as a series of scoring metrics19,20,47–49.

With UMAP embedding, we note that all of the raw datasets dis-
played strong batch effects, with cell-types that were common in dif-
ferent batches separately distributed. Overall, SCALEX, Seurat v3, and
Harmony achieved the best integration performance for most of the
datasets by merging common cell-types across batches while keeping
disparate cell-types apart (Supplementary Fig. 2). MNN, scVI, and
Conos integrated many datasets but left some common cell-types not
well-aligned. Online iNMF, LIGER, BBKNN, and Scanorama often had
unmerged common cell-types, and sometimes incorrectly mixed dis-
tinct cell-types together. For example, considering the T cell popula-
tions between the two batches in the PMBC dataset (Fig. 1b), while
SCALEX, Seurat v3, Harmony, MNN, scVI integrations were effective,
online iNMF misaligned some of the CD4 naïve T cells with CD8 naïve
T cells, and misaligned some NK cells with CD8 T cells.
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SCALEX substantially outperformed all of the other methods
for cell-type clustering, as assessed by the adjusted Rand Index
(ARI)47 and the Normalized Mutual Information (NMI)48 (Fig. 1c,
Supplementary Figs. 3, 4). To quantify cell-type separation and

batch mixing we used two paired metrics: a pair comprising the
Silhouette score49 and the batch entropy mixing score19, as well as
a pair comprising the cell-type and integration local inverse
Simpson’s Indexes (cLISI and iLISI)20. Overall, SCALEX achieved

Fig. 1 | The design and performance of SCALEX for single-cell data integration.
a SCALEX models the global structure of single-cell data using a variational auto-
encoder (VAE) framework. b UMAP embeddings of the PBMC dataset before and
after integration by indicated methods. Cells are colored by batch (left) and cell-
type (right). Misalignments are highlighted with red circles. c Scatter plot com-
paring SCALEX and the other state-of-the-art single-cell data integration tools in
terms of the ARI score (y-axis) and the NMI score (x-axis), based on the Leiden
clustering results in the latent space across the indicated benchmark datasets.
d UMAP embeddings of the SCALEX integration of the Human Fetal Atlas dataset
after integration by SCALEX, colored by batch and cell-type. e Comparison of

computation efficiency basedondatasets of different sizes sampled from thewhole
Human Fetal Atlas dataset) including runtime (left) and memory usage (right).
Online iNMF was not successfully tested on 4M data due to a HDF5 file conversion
issue for large data (“Online iNMF and LIGER (LIGER, v1.0.0)” subsection of
“Comparison with other integrationmethods” inMethods). fUMAP embeddings of
the mouse brain scATAC-seq dataset before (left) and after integration (middle,
right); colored by data batch or cell-types. g UMAP embeddings of the PBMC
scRNA-seq and scATAC-seq cross-modality dataset before (left) and after SCALEX
integration (middle, right); colored by batch or cell-type.
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the highest scores for cell-type separation, and tied with Seurat
v3 and Harmony as the best-performing methods on the batch
mixing metrics (Supplementary Fig. 4a). Interestingly, we
observed that both LIGER and online iNMF often scored the
lowest for cell-type separation yet the highest for batch mixing.
However, after careful investigation, we concluded that a higher
batch mixing score does not necessarily indicate better data
integration, but instead often indicates an issue of over-correc-
tion, which we consider in-depth in a dedicated subsection below.
Finally, we followed the protocol in a recent large-scale study for
benchmarking single-cell integration methods to compare SCA-
LEX against ten state-of-the-art methods using multiple scores50

(“Single-cell integration benchmarking (scIB)” in Methods). We
observed that SCALEX outperformed all other tools on the pan-
creas, liver, and NSCLC datasets in terms of the overall score, and
ranked the third on the PBMC dataset and the fourth on the heart
dataset (Supplementary Fig. 4b).

SCALEX is scalable to Atlas-level datasets and accommodates
diverse data modalities
Single-cell datasets that contain a large number of cells and consist of
heterogenous and complex samples from multiple tissues have been
termed “Atlas-level” datasets in a recent comparative study33. These
Atlas-level datasets are posing new challenges to data integration
tools. We tested the scalability and computation efficiency of SCALEX
by applying it to a typical Atlas-level dataset, the Human Fetal Atlas
dataset, which contains 4,317,246 cells from two data batches,
GSE156793 and GSE134355 (Supplementary Fig. 5a, b, “Preprocessing
for scRNA-seq” in Methods)8,15. SCALEX accurately integrated these
two batches, showing good alignment of the same cell-types (Fig. 1d).
In addition to SCALEX, only BBKNN, Scanorama, and scVI can be used
to integrate this Atlas-level dataset, however, their integrations does
not separate and align the cell-types well, as indicated by the UMAP
embeddings (Supplementary Fig. 5c) and the low cell-type separation
and batch mixing scores (Supplementary Fig. 5d).

We compared the computational efficiency of different methods
using down-sampled datasets (of 10 kilo (K), 50K, 250K, 1 million (M),
and 4M cells) from this Human Fetal Atlas dataset. Both SCALEX and
online iNMF consumed very efficient runtime and memory that
increased only linearly with data size. scVI also is scalable to 4M cells
with acceptable memory usage, whereas Seurat v3, Harmony, Conos,
and LIGER consumed runtime and/or memory that increased expo-
nentially, thus did not scale beyond 1M cells on a workstation of 64
central processing unit (CPU) cores and 256 gigabytes (GB) memory
(Fig. 1e). Notably, the deep learning framework of SCALEX enables it to
run very efficiently on graphics processing unit (GPU) devices,
requiring much reduced runtime (using about 20minutes and 90 GB
of memory on the 4M dataset).

SCALEX can be used to integrate other modalities of single-cell
data (e.g., scATAC-seq51,52, cellular indexing of transcriptomes and
epitopes by sequencing, CITE-Seq53, etc.) and cross-modality data (e.g.,
simultaneous analysis of scRNA-seq and scATAC-seq). SCALEX sub-
stantially outperformed all other methods for integration of mouse
brain scATAC-seq datasets (two batches assayed by single nucleus
assay for transposase-accessible chromatin using sequencing, snATAC
and 10X)54 (Fig. 1f, Supplementary Fig. 6a–c), and performed well for
integration of additional single-cell data modalities including CITE-
seq53 and spatial transcriptome MERFISH data55 (Supplementary
Fig. 6d, e). We also used SCALEX to integrate a cross-modality dataset
(scRNA-seq and scATAC-seq)56,57 and found that SCALEX correctly
integrated the two modalities of data and distinguished rare cells that
are specific to the scRNA-seq data, including pDC and platelet cells
(Fig. 1g), doing so better than other methods including two additional
methods scjoint58 and bindSC59, according to both UMAP embeddings
and multiple analytical metrics (Supplementary Fig. 7).

SCALEX integrates partially overlapping datasets without over-
correction
Many recent single-cell datasets, especially Atlas-level datasets, feature
high sample heterogeneity and complex cell-type compositions9,10.
These datasets often contain partially overlapping batches where each
batch contains some non-overlapping cell populations. For example,
the liverdataset is a partially overlappingdatasetwhere the hepatocyte
population contains multiple subtypes specific to different batches:
three subtypes are specific to LIVER_GSE124395, and two other sub-
types only appear in LIVER_GSE115469 (Supplementary Fig. 8).

This partial overlapproblempresents amajor challenge for single-
cell data integration and often leads to an issue of over-correction (i.e.,
mixing of distinct cell-types), especially for those local cell similarity-
based methods16,17. For example, Seurat v3 mixed the hepatocyte-
CXCL1, hepatocyte-CYP2A13, and hepatocyte-TAT-AS1 cells and Har-
mony mixed the hepatocyte-CYP2A13 and hepatocyte-TAT-AS1 cells
(Fig. 2a). As a global integration method that projects cells into a
common cell-embedding space, SCALEX is expected to be less sensi-
tive to this problem. Indeed, we noticed that SCALEX correctly main-
tained the five hepatocyte subtypes apart (as did scVI. Fig. 2a).
Unexpectedly, despite being a global method, online iNMF severely
suffered from over-correction, mixing all five hepatocyte subtypes,
and even mixing B cells and NK cells (Fig. 2a), presumably because its
matrix factoring algorithm forced the alignment of distinct cell-types.

We defined an over-correction score, a metric to measure this
over-correction problem based on the percent of cells with incon-
sistent cell-types in the neighborhood for each cell (“Over-correction
score” in Methods). Formally, the over-correction score is a negative
index, i.e., the higher the over-correction score, the more severe the
extent of inaccurate mixing of cell-types. For the benchmark datasets,
SCALEX had the lowest over-correction scores (Fig. 2b), whereas
online iNMF yielded extremely high over-correction scores.

To systematically characterize the performance of different
methods on partially overlapping datasets, we constructed test data-
sets with a range of common cell-types, that we generated based on
down-sampling of the six major cell-types in the pancreas dataset
(“Generation of partially overlapping datasets” in Methods). SCALEX
integration was accurate for all cases, aligning the same cell-types
without over-correction, whereas Seurat v3, Harmony, and online
iNMF frequently mixed distinct cell-types (Fig. 2c, d). Although scVI
showed one of the lowest levels of over-correction when integrating
partially overlapping datasets, it is prone to mistakenly splitting one
cell-type into many small groups. We noted that the severity of over-
correction and error-splitting is amplified as the overlapping number
decreases (Supplementary Fig. 9). When there were no common cell-
types, both Seurat v3 and Harmony collapsed the six cell-types into
three, mixing alpha with gamma cells, beta with delta cells, and acinar
with ductal cells to varying extents, whereas scVI split alpha cells into 6
groups. We repeated this down-sampling analysis from the 12 cell-
types in the PBMC dataset and observed similar results of over-
correction and error-splitting (Supplementary Fig. 10).

SCALEX increases the scope and resolution of an existing cell
space by adding new data through online projection
The generalizability of SCALEX’s encoder to project cells from various
sources into a common cell-embedding space without model retrain-
ing allows SCALEX to integrate new single-cell data with existing data
in an online manner. We tested the online data integration perfor-
mance of SCALEX for newly arriving data based on the pancreas
dataset. Prior to projection, we first used SCALEX to integrate the
pancreas dataset and this accurately removed the strong batch effect
that was evident in the raw data (Fig. 3a, Supplementary Fig. 11a, b).

We subsequently projected three new batches of scRNA-seq
data60–62 for pancreas tissues (Fig. 3b) into this “pancreas cell space”
using the same SCALEX encoder trained on the original pancreas
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Fig. 2 | Comparison of integration performance over partially overlapping
datasets by different methods. a UMAP embeddings of the integration results by
the indicated methods based on the liver dataset. b Over-correction score of dif-
ferent methods based on the indicated benchmark datasets. c Over-correction
score of the indicated methods based on the simulated datasets, with decreased

numbers of common cell-types (obtained by down-sampling the pancreas and
PBMC dataset). d UMAP embeddings of the integration results by the indicated
methods based on the simulated pancreas datasets with different numbers of
specified common cell-types. Over-corrections are highlighted with red circles and
error-splittings with purple circles, respectively.
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dataset. After projection, most of the cells in the new batches were
accurately aligned to the correct cell-types in the pancreas cell space,
enabling their accurate annotation by cell-type label transfer (Fig. 3c,
“Cell-type annotation by label transfer” in Methods). We benchmarked
projection accuracy by calculating the ARI, the NMI, and the F1 scores

to evaluate cell-type annotation by label transfer with cell-type infor-
mation in the original studies. We compared the results with online
iNMF and scVI, the only two tools that are able to project cells into an
existing cell-space (note that data projection of scVI needs model
retraining through scArches). SCALEX achieved the highest projection

Fig. 3 | Projecting heterogenous data into a common cell-embedding space.
a UMAP embeddings of the pancreas dataset after integration by SCALEX, colored
by cell-type and by batch. bUMAP embeddings of the common cell space obtained
by using SCALEX to project three additional indicated pancreas data batches onto
the pancreas dataset. Cells are colored by cell-type with light gray shadows
representing the original pancreas dataset. c Confusion matrix between ground
truth cell-types and those annotated by different methods. ARI, NMI and F1 scores
(top)measure the annotation accuracy.dUMAPembeddings of the common space
obtained by using SCALEX to project the two projected melanoma data batches

onto the PBMC dataset, colored by cell-types with light gray shadows represent the
originalPBMCdataset.eUMAPembeddings of the commoncell space that includes
the original PBMC dataset and the two projected melanoma data batches.
f Annotating an uncharacterized small cell population in the pancreas dataset by
projection of the bronchial epithelium data batches into the pancreas cell space.
Only the uncharacterized cells in the pancreas dataset (left) and the SLC16A7+
epithelial cells in the bronchial epithelium data batches (right) are colored.
gHeatmap showing the normalized expression of the top-10 ranking specific genes
for the uncharacterized cell population in different cell-types.
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accuracy in comparisons with online iNMF and scVI (Fig. 3c). scVI also
achieved high accuracy, projecting most cells onto right locations,
with only a few exceptions of alpha and ductal cells (Supplementary
Fig. 11c). Online iNMF mixed distinct cell-types when incorporating
new batches, e.g., projecting some alpha cells onto the locations of
gamma and delta cells (Supplementary Fig. 11c), which in turn led to
wrong annotations during label transfer (Fig. 3c).

The ability to project new single-cell data into an existing cell-
embedding space allows SCALEX to readily enrich (i.e., to add biolo-
gical resolution) this cell space with additional informative details. To
verify this, we projected two additional melanoma data batches
(SKCM_GSE72056, SKCM_GSE123139)10,63 onto the previously con-
structed PBMC space. Again, SCALEX correctly projected all common
cell-types onto the same locations in the PBMC cell space (Fig. 3d), but
online iNMFmixed tumor cells with plasma,monocyte andCD8Tcells,
and scVI split the CD8T cells into several distinct groups (Supple-
mentary Fig. 12). Importantly, we noticed that for the tumor and
plasma cells only present in the melanoma data batches, SCALEX did
not project these cells onto any existing cell populations in the PBMC
space; rather, it projected them onto new locations close to similar
cells, with the plasma cells projected to a location near B cells, and the
tumor cells projected to a location near HSC cells (Fig. 3e). This indi-
cates that SCALEX can enrich an existing cell spacewith new cell-types
through data projection.

SCALEX projection also enables post hoc annotation of unknown
cell-types in an existing cell space using new data. For instance, we
noted a group of previously uncharacterized cells in the pancreas
dataset (Fig. 3a). We found that these cells displayed high expression
levels of known epithelial gene markers. We therefore assembled a
collection of epithelial cells from the bronchial epithelium dataset64,
and then projected these epithelial cells onto the pancreas cell space.
We found that a group of antigen-presenting airway epithelial
(SLC16A7 + epithelial) cells were projected onto the same location of
the uncharacterized cells (Fig. 3f). These data, together with the
observation that both cell populations showed similar marker gene
expression (Fig. 3g), suggest that these uncharacterized cells are also
SLC16A7 + epithelial cells. Note that online iNMF and scVI were not
able to identify this small group of epithelial cells, because they were
split into several smaller groups and/or were often mixed with other
cell-types (Supplementary Fig. 2). SCALEX thus enables discovery sci-
ence in cell biology by supporting exploratory analysis with large
numbers of diverse datasets.

SCALEX integration constructs expandable single-cell atlases
The ability to combine heterogenous data into a common cell-
embedding space makes SCALEX a powerful tool to construct a
single-cell atlas from a collection of diverse datasets. We applied SCA-
LEX integration to three large and complex datasets: the Mouse Atlas
dataset (comprising multiple organs from two studies assayed by 10X,
Smart-seq2, and Microwell-seq12,14), the Human Atlas dataset (compris-
ing multiple organs from two studies assayed by 10X and Microwell-
seq15,65), and the Human Fetal Atlas dataset8,15 (Supplementary Fig. 13).

Despite the strong batch effects in the raw data, SCALEX accu-
rately integrated the three batches of the Mouse Atlas data into a
common cell-embedding space (Fig. 4a–c, Supplementary Fig. 14a).
Common cell-types were well-aligned at the same position in the cell
space, including B, T, and endothelial cells presented in all tissues, and
proximal tubule, urothelial, and hepatocytic cells from particular tis-
sues. Distinct cell-types were located separately, such as sperm, Ley-
dig, and small intestine cells from theMicrowell-seq data, keratinocyte
stemcells and large intestine cells from the Smart-seq2data, indicating
that biological variations were well preserved (Supplementary Fig 14b,
c). We compared SCALEX with all other methods and found that
SCALEX performed the best for cell-type clustering, especially for
avoiding over-correction (Fig. 4d, e, Supplementary Fig. 13b).

Importantly, atlases generated with SCALEX can be further
expanded by projecting new single-cell data to support comparative
studiesof cells both in theoriginal atlas and in thenewdata. To illustrate
this utility, we projected two additional data batches of aged mouse
tissues from Tabula Muris Senis (Smart-seq2 and 10X)13 and two single
tissue datasets (lung and kidney)66 onto the SCALEX Mouse Atlas cell
space. We found that cells in the new data batches were correctly
projected onto the locations of the same cell-types in the cell-
embedding space of the initial atlas (Fig. 4f) as confirmed by the accu-
rate cell-type annotations for the new data by label transfer (Fig. 4g).

Following the same strategy, we constructed a SCALEX Human
Atlas by integration of multiple tissues from two studies (GSE134355,
GSE159929) (Supplementary Fig. 15a, b). SCALEX effectively eliminated
the batch effects in the original data and integrated the two datasets
(Supplementary Fig. 15c, d). Again, we were able to correctly project
two additional human skin datasets (GSE130973, GSE147424)67,68 onto
the Human Atlas cell space (Supplementary Fig. 15e), and accurately
annotated these projected skin cells (Supplementary Fig. 15f). In sum,
these results illustrate that SCALEX enables: i) researchers to evaluate
their project-specific single cell datasets by leveraging existing infor-
mation in large-scale (and ostensibly well annotated) cell atlases; and
ii) atlas creators to informatively integrate new datasets and derive
new biological insights from new research programs.

An integrative SCALEX COVID-19 PBMC Atlas revealed distinct
immune responses among COVID-19 patients
Many single-cell studies have been conducted to analyze COVID-19
patient immune responses69–76. However, these studies often suffer
from small sample size and/or limited sampling of various disease
states70,76. For a comprehensive study, we used SCALEX to generate a
COVID-19 PBMC Atlas, integrating data from nine COVID-19 studies,
involving a total of 860,746 single cells in 10 batches69–75 (Fig. 5a,
Supplementary Dataset 1). We identified 22 cell-types, each of which
has support from gene expression data for canonical markers (Fig. 5b,
c, Supplementary Fig. 16a, “Cell-type annotation by clustering” in
Methods). Cells across different studies were integrated accurately
with the same cell-types aligned together, confirming the integration
performance of SCALEX (Supplementary Fig. 16b), which was much
better than the other methods (Supplementary Fig. 16c, d).

Interestingly, we found that some cell subpopulations were dif-
ferentially associated with patient status (Fig. 5d). A subpopulation of
CD14 monocytes (CD14-ISG15-Mono) was characterized by its high
expression of Type I interferon-stimulated genes (ISGs) and genes
enriched with immune-response-related gene ontology (GO) terms
(Fig. 5e, f). The frequency of CD14-ISG15-Mono cells increased sig-
nificantly from mild/moderate to severe patients (Fig. 5g, Supplemen-
tary Fig. 17a, “Analysis of changes in cell-type frequency acrossmultiple
conditions” in Methods). Within the COVID-19 patients, we observed a
significant decrease in ISG gene expression in CD14-ISG15-Mono cells
between the mild/moderate and severe cases, suggesting an immune
exhaustion-like response in severe COVID-19 patients69 (Fig. 5e).

Additionally, a neutrophil subpopulation (NCF1-Immature_-
Neutrophil), characterized by decreased expression of the genes
responsible for neutrophil activation but elevated expression of genes
enrichedwith viral-process-relatedGO terms,was specifically enriched
in severe verse mild/moderate patients (Supplementary Fig. 17b, c). A
plasma cell subpopulation (MZB1-Plasma), characterized by decreased
expression of genes related to antibody production and enriched for
immune and inflammatory response-related GO terms, were also
enriched in severe patients (Supplementary Fig. 17d, e). Thus, the
SCALEX COVID-19 PBMC atlas, generated by integrating a highly
diverse collection of single-cell data from individual studies, identified
multiple immune cell-types that become progressively dysfunctional
during COVID-19 disease progression74. Importantly, these cell trends
were not and could not have been detected in the small-scale,
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Fig. 4 | Construction of an expandable mouse single-cell atlas. a Datasets
acquired using different technologies (Smart-seq2, 10X, and Microwell-seq) cov-
ering various tissues used for constructionof themouse atlas.bUMAPembeddings
of theMouse Atlas dataset colored by batch and tissue. cUMAP embeddings of the
MouseAtlas after SCALEX integration, coloredby cell-type.d Scatterplot showing a
quantitative comparison of the ARI score (y-axis) and the NMI score (x-axis) based-
on the Leiden clustering results on the latent space based on the Human Atlas,
Mouse Atlas, and Human Fetal Atlas datasets. e Comparison of over-correction

score by the indicated methods based on the Human Atlas, Mouse Atlas, and
Human Fetal Atlas datasets. f UMAP embeddings of the common cell space
obtained by using SCALEX to project the two Tabula Muris Senis data batches and
two mouse tissues (lung and kidney) data batches onto the Mouse Atlas dataset.
Cells are colored by cell-type with light gray shadows representing the original
Mouse Atlas dataset. g Confusion matrix of the cell-type annotations by SCALEX
and those in the original studies. Color bar represents the percentage of cells in
confusion matrix Cij known to be cell-type i and predicted to be cell-type j.
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individual studies that served as the basis for our SCALEX COVID-19
PBMC atlas.

Online integration of the SCALEX COVID-19 PBMCAtlas with the
SC4 consortium study
Our analysis based on the SCALEX COVID-19 PBMC Atlas yielded
findings consistent with two conclusions from the Single Cell

Consortium for COVID-19 in China (SC4) study, a recent large-scale
effort that generated a single-cell atlas of over 1 million cells from 171
COVID-19 patients and 25 healthy controls7 (Supplementary Fig. 18a).
First, both studies observed the same set of immune cell subpopula-
tions which displayed differential associations with COVID-19 severity.
The proportions of CD14 monocytes, megakaryocytes, plasma cells,
andproT cellswere elevatedwith increasingdisease severity, while the
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proportion of pDC and mDC cells decreased (Fig. 5g). Second, based
on calculating the same cytokine score and inflammatory score
(defined in the SC4 study) for the cells in our SCALEX COVID-19 PBMC
Atlas, we confirmed that the monocyte subpopulations are associated
with cytokine storms triggered by SARS-Cov2 infection and are further
elevated in severe patients77 (Fig. 5j, “Inflammatory and cytokine score
analysis” in Methods, adjusted p-value < 0.01).

SCALEX’s online integration capacity enables us to project the
SC4 consortium dataset into the cell space of the SCALEX COVID-19
PBMC Atlas. We found that the cell-types of two atlases were well-
aligned (Fig. 5h, i, Supplementary Fig. 18b, c). Integration of the SC4
data further substantially improved both the scope and resolution of
the SCALEX COVID-19 PBMCAtlas. First, this data addedmacrophages
and epithelial cells to the cell space, enabling investigation of their
potential involvement in COVID-19. The integration also supported
more precise characterization of specific cell subpopulations. For
example, the megakaryocyte population, not distinguished in either
the SCALEX COVID-19 PBMC Atlas or the SC4 Atlas (Supplementary
Fig. 16c), were divided into two subpopulations in the combined atlas
after projection of SC4 (Fig. 5h). An exploratory functional analysis of
the differentially expressed genes in these two newly delineated
megakaryocyte subpopulations (TUBA8-Mega and IGKC-Mega, Sup-
plementary Fig. 18d, e) revealed enrichment for the GO terms
“humoral immune response” for IGKC-Mega cells, yet enrichment for
“negative regulation of platelet activation” for TUBA8-Mega cells
(Fig. 5k). These results illustrate how the continuously expandable
single-cell atlases generated using SCALEX capitalize on existing large-
scale data resources and also facilitate the discovery of new biological
and biomedical insights.

Discussion
Single cell studies are becoming more and more prevalent, growing
larger and larger in scale, and expanding in the scope of sample
types, often with quite heterogenous cell subsets. Thus, there is a
great need for data integration tools to accurately and efficiently
handle these Atlas-level datasets33. Further, there is also a need for
online integration capacity to continuously incorporate incoming
new data with existing integrations without having to recalculate
from scratch24. By design, SCALEX learns a generalized projection
function to project heterogeneous single-cell data into a common
cell-embedding space, enabling it to achieve bona fide online data
integration. SCALEX is also computationally efficient, and preserves
biological variations and avoids over-correction when integrating
partially overlapping datasets.

These features make SCALEX particularly useful for Atlas-level
datasets, allowing the integration of many single-cell studies to sup-
port ongoing, very large-scale research programs throughout the life

sciences and biomedicine. We speculate that use of SCALEX to project
single-cell datasets from highly diverse cancer types to construct a
pan-cancer single-cell atlas may lead to the discovery of previously
unknown cell-types that are common todivergent carcinomas and that
function in pathogenesis, malignant progression, and/or metastasis.

Methods
Overview of the SCALEX model
SCALEX applies a variational autoencoder (VAE) to project the differ-
ent batches of datasets into the same batch-invariant low-dimensional
embeddings by learning a batch-free encoder and a batch-specific
decoder simultaneously. Since the encoder and decoder are coupled
to learn a batch-free encoder, a batch label (b) is only exposed to the
decoder within the domain-specific batch normalization (DSBN), thus
the decoder captures the batch information while the encoder learns
the domain-invariant features. In the encoder, SCALEX takes the input
expression profile (x) across all the batches as a whole mixture dis-
tribution without distinguishing their batch sources and extracts their
mean (μ) and variance (σ2) of the latent representations (z) in a 10-
dimension embedding space to learn their global data structure. A
standard multivariate Gaussian prior is used for z, while the approxi-
mated distribution of z is re-parameterized by z=μ+σ * ε, where ε is
sampled from Nð0, IÞ. In the decoder, SCALEX maps the latent
representations with batch label (b) back to their original profile. To
enable the decoder to capture the batch-specific variations, a DSBN
layer is applied to learn a batch-specific normalization for each batch
label (b), before transforming them back to their original profile with
the new batch variations. To learn the global distribution to avoid
overcorrection on partially overlapping datasets, within each mini-
batch in the training process, SCALEX randomly samples data from all
batches and trains on them together with Batch Normalization to
smooth the batch-specific shifts and align to the global distribution.
Once trained, the encoder of SCALEX is generalized to any batches and
serves as a universal function for globallymapping different batches of
datasets into the same batch-invariant space.

Training SCALEX is tomaximize the log-likelihoodof theobserved
single-cell sequencing data (x):

logp xð Þ= log
Z
z
p x, zð Þdz ð1Þ

≥ Eq z∣xð Þ log
p x, zð Þ
q z∣xð Þ

� �
ð2Þ

=LELBO xð Þ ð3Þ

Fig. 5 | Online integration of COVID-19 PBMC Atlas. a The COVID-19 PBMC Atlas
dataset composition, including healthy controls and influenza patients, as well as
mild/moderate, severe, and convalescent COVID-19 patients. b, c UMAP embed-
dings of the COVID-19 PBMC Atlas after SCALEX integration colored by cell-type
(b), and by batch (c). Note that here in order to keep the same UMAP embedding
space as (h), we show the UMAP embeddings of the SCALEX COVID-19 PBMC Atlas
after projecting SC4 data, The UMAP embedding of SCALEX COVID-19 PBMC Atlas
alone is shown in Supplementary Fig. 16. d UMAP embeddings of the COVID-19
PBMCAtlas separated by disease state. Cells are colored by cell-type with light gray
shadows representing the other disease state cells. e Stacked violin plot of
differentially-expressed ISGs among CD14 monocytes across disease states. f GO
terms enriched in thedifferentially-expressedgenes for CD14-IL1B-Mono andCD14-
ISG15-Mono cells. Hypergeometric test, p-values were adjusted using the
Benjamini-Hochberg method. g Cell-type frequency across healthy (n = 31) and
influenza controls (n = 5), and among mild/moderate (n = 46), severe (n = 50), and
convalescent (n = 12) COVID-19 patients. Dirichlet-multinomial regression was used
for pairwise comparisons, two-sided t-test, CD14-ISG15-Mono, healthy control vs

mild/moderate: p=9.78×10−10, mild/moderate vs severe: p=0.0057; pDC, healthy
control vs severe: p =0.0053;mDC, healthy control vsmild/moderate:p =0.00072,
healthy control vs severe: p = 1.05 × 10−5. ***p <0.001, **p <0.01, *p <0.05. Midline,
median; boxes, interquartile range; whiskers, 1.5× interquartile range. h UMAP
embeddings of the common cell space obtained by using SCALEX to project the
SC4 Atlas (Single Cell Consortium for COVID-19 in China). Cells are colored by cell-
type from label transfer based-on the locations in the COVID-19 PBMCAtlas dataset
(left) and cell clusters in original SC4 study (middle), and Unified UMAP embed-
dings combining the SCALEX COVID-19 PBMC Atlas and the SC4 Atlas (right).
iConfusionmatrix of the cell-type annotations by SCALEX and those in the original
studies. Color bar represents the percentage of cells in confusion matrix Cij known
to be cell-type i and predicted to be cell-type j. j UMAP embeddings of the SCALEX
COVID-19 PBMC Atlas colored by the cytokine score and the inflammatory score.
k GO terms enriched in the differentially-expressed genes for TUBA8-Mega and
IGKC-Mega cells. Hypergeometric test, p values were adjusted using the Benjamini-
Hochberg method.
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Then the loss function is transformed into the evidence lower
bound (ELBO). While the ELBO can be further decomposed into two
terms:

LELBO xð Þ= Eq z,∣,xð Þ logp x∣zð Þ� �� DKLðq z∣xð Þ k p zð ÞÞ ð4Þ

The first term is the reconstruction term, which minimizes the
distance between the generated output data (x0) and the original input
data (x), calculated as the binary cross entropy between x0 and x. The
second term is the regularization term, whichminimizes the Kullback-
Leibeler divergence between posterior distributionNðμ, σ2Þ and prior
distribution Nð0, IÞ of latent representations (z). To enable a more
flexible alignment under the latent space, we adjusted the coefficient
of the second term to0.5 after hyper-parameter optimization via a grid
search; thus, the final loss function is:

LELBO xð Þ= Eq z∣xð Þ logp x∣zð Þ� �� 0:5*DKLðq z∣xð Þ k p zð ÞÞ ð5Þ

The overall network architecture of SCALEX consists of an enco-
der and a decoder. The encoder is a two-layer neural network (fully
connected [1024]-BN-ReLU-fully connected [10]) for mean (μ) and
variance (σ2) of the 10-dimension latent representations (z) using a
reparameterization to obtain latent representations (z), and the
decoder has only one layer (no hidden layer), directly connecting
latent representations (z) to the output (x0) (fully connected-DSBN-
Sigmoid) with domain-specific batch normalization, where the latent
representations (z) and batch label (b) are provided as input, and a
Sigmoid activation function.We used the Adam78 optimizer with a 5e-4
weight decay and betas (0.9, 0.999, the exponential decay rate for the
first and secondmoment parameters) to optimize themodel under the
learning rate 2e-4. We adopted mini-batch strategy to iteratively
optimize the model, in each mini-batch, we randomly sampled data
from all batches instead of from the same batch, and the mini-batch
size for training input is 64. The maximum number of training itera-
tions is 30,000 and an early stopping is triggered when there has been
no improvement for 10 epochs. The hyper-parameters are chosen after
a grid search. SCALEX is very robustwith all of thesehyper-parameters,
all of the results in this manuscript are produced under the same
parameters.

Domain-specific batch normalization (DSBN)
Batch normalization (BN)32 is a widely used training technique in deep
neural networks to reduce internal covariate shifting. A BN layer
whitens activations within a mini-batch of samples followed by scaling
and shiftingwith learned affine parameters γ and β. For amini-batch of
samples: B = x1...m

� �
;

μB =
1
m

Xm
i = 1

xi ð6Þ

σ2
B =

1
m

Xm
i = 1

xi � μB
� 	2 ð7Þ

x̂i =
xi � μBffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
B + ϵ

q ð8Þ

yi = γx̂i + β � BNγ,β xi

� 	
ð9Þ

Where μB is the mini-batch mean, σ2
B is the mini-batch variance, x̂i is

the normalized output by μB and σ2
B, yi is the BNoutput by scaling and

shifting x̂i with parameters γ and β, and ϵ is a constant added to the
mini-batch variance for numerical stability.

Domain specific batch normalization (DSBN)31 is a combination of
multiple sets of BN specific to each domain. DSBN learns domain-
specific affine parameters γd and βd for each domain, d is the domain
label; here, domain represents different batches. In the neural net-
work, DSBN serves like multi-channel BN and switches to the corre-
sponding BN given the domain label d. The DSBN layer can be written
as:

yd = γdx̂d + βd � DSBNγd ,βd
xd ,d
� 	

ð10Þ

where d is the batch label, and γd and βd are domain-specific affine
parameters for domain d.

DSBN could capture the domain-specific information by estimat-
ingmini-batch statistics by learning affine parameters for each domain
separately, thus enabling the network to learn the domain-invariant
features.

Preprocessing for scRNA-seq
We downloaded gene expression matrices and preprocessed them
using the following procedure: i). Cells with fewer than 600 genes and
genes present in fewer than 3 cells werefiltered out. ii). Total counts of
each cell were normalized to 10,000. iii). Values of each gene were
subjected to log transformation with an offset of 1. iv). The top 2000
highly variable genes were identified. v). Values of each gene were
normalized to the range of 0-1 within each batch by theMaxAbsScaler
function in the scikit-learn package in Python. The processed matrix
was used as input for the SCALEX model for downstream differential
gene expression analysis.

For the human fetal atlasdataset, we collected twobatches (batch
GSE156793, which contains 4,062,980 cells by sciRNA-seq3, and batch
GSE134355, which contains 254,266 cells by Microwell-seq). We then
selected the cells from the common tissues (1,369,619 cells) for inte-
gration and computational efficiency benchmarking (down-sampled
from different data sizes including 10 K, 50 K, 250K, 1M, and 4M).

Preprocessing for scATAC-seq
We downloaded open chromatin profile matrices (peaks or bins),
merged them by peaks (or bins), and processed them using the fol-
lowing procedure: i). The combined matrix was binarized and filter
bins with fewer than 3 cells. ii). The top 30,000most variable peaks (or
bins) were selected using the select_var_feature function in the
EpiScanpy79 package. iii). Total counts of each cell were normalized to
the median of the total counts of all cells by using the normalize_total
function, with parameters target_sum=“None” in the Scanpy80 package.
iv). Values of each peak (or bin) were normalized to the range of 0-1
within each batch by the MaxAbsScaler function in the scikit-learn
package in Python. The processed matrix was used as input for the
SCALEX model.

Preprocessing for cross-modality data (scRNA-seq and
scATAC-seq)
We first created a gene activity matrix by the GeneActivity function in
the Signac81 R package to quantify the activity of each gene from
scATAC-seq data. We then combined gene activity score matrix with
scRNA-seq data matrix as two individual “batches” for integration. The
subsequent preprocessing followed the same preprocessing used for
the scRNA-seq data (above).

Clustering
For Harmony, MNN, Conos, BBKNN, Scanorama, scVI, LIGER, and
online iNMF, weused their latent featureswithmethod specific default
dimensions for further clustering. For Seurat v3, we initially performed
integration and obtained the 2000-dimensional latent feature vectors
following the standard workflow, and then we used PCA for
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dimensionality reduction because 2000-dimensional latent feature
vectors are toohigh todirectly cluster. Finally, weused 50-dimensional
PCA latent feature vectors for clustering. For Conos and BBKNN, since
they do not provide latent feature vectors after integration (and we
failed to extract the latent feature vectors from their constructed
either neighborhood or joint graphs), we used UMAP features for
downstream clustering.

To ensure a fair comparison, we used scanpy.tl.leiden and scan-
py.tl.louvain functions for clustering with resolution=0.5. For BBKNN
and Conos, since resolution=0.5 generates too many clusters, we also
included clustering results of with resolution =0.05, which were used in
our benchmark comparison (more details in Supplementary Dataset 2).

Visualization
UMAP algorithm46 was used for visualization.We applied the neighbors
function from the Python package Scanpy with the parameters
n_neighbors=30 and metric=“Euclidean” for computing the neighbor
graph, followedby umap functionwithmin_dist=0.1 to visualize cells in
a two-dimensional space. Tissue anatomy diagrams are generated by
gganatogram (v2) R package82,83.

Adjusted Rand Index
The Rand Index (RI) computes a similarity score between two clus-
tering assignments by considering matched and unmatched assign-
ment pairs, independent of the number of clusters. The Adjusted Rand
Index (ARI) score is calculated by “adjust for chance”with RI as follows:

ARI =
RI � Expected RI

max RIð Þ � Expected RI
ð11Þ

If given the contingency table, then ARI can also be represented
by:

ARI =
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The ARI score is 0 for random prediction and 1 for perfectly
matching.

Normalized mutual information

NMI =
I P;Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Pð ÞH Tð Þ

p ð13Þ

Where P and T are categorical distributions for the predicted and real
clustering, I is the mutual entropy, and H is the Shannon entropy.

Silhouette score
We used the silhouette score to assess the separation of biological
populations with the function silhouette_score in the scikit-learn package
in Python. The silhouette scorewas computedby combining the average
intra-cluster distance (a) and the averagenearest-cluster (b) for each cell.

silhouette score=
b� a

max a,bð Þ ð14Þ

Here, we took UMAP embeddings as input to calculate
silhouette score.

Batch entropy mixing score
Batch entropy mixing score (adapted from “entropy of batch
mixing”19) was used to access the regional mixing of cells from differ-
ent batches, with a high score suggesting that cells from different
batches are well mixed together.

The batch entropy mixing score was computed as follows:
(1) Calculated the proportion Pi of cell numbers in each batch to the

total cell numbers.
(2) Randomly chose 30 cells from all batches.
(3) Calculated the 30 nearest neighbors for each randomly

chosen cell.
(4) The regional mixing entropies for each cell were defined as:

pi0 =
pi
PiPn

i= 1

pi
Pi

ð15Þ

E =
Xn

i=0
pi0log pi0

� 	 ð16Þ

where pi is the proportion of cells from batch i in a given region, such
that

Pn
i=0pi= 1, pi’ is a correction item to eliminate the deviation

caused by the different cell numbers in different batches. The total
mixing entropy was then calculated as the sum of the regional mixing
entropies.
(5) Repeated (2)-(4) for 10 iterations with different randomly chosen

cells and calculated the average, E, as the final batch entropy
mixing score.

Note that to mitigate the effect of misalignment of batch-specific
cell-types, we calculated the batch entropymixing score only based on
cells from cell-types that are common in different batches.

Local inverse Simpsons Index (LISI)
TheLISImetricwasproposedbyKorsunsky et al. 201920 to assessbatch
and cell-typemixing.Wecalculated integrationLISI (iLISI) and cell-type
LISI (cLISI) values using the compute_lisi function in the lisi R package.
UMAP embeddings, batch labels, and cell-type labels were used as
input in calculation. Briefly,

LISI xi
� 	

=
1P

y2Y P y,∣,xi

� 	2 ð17Þ

where xi 2 x1, x2, . . . , xN
� �

is the i-th cell’s UMAP embeddings in the
dataset of size N, and Y is the set of unique values with respect to the
type of LISI we are computing (i.e., Y is the values of “batch label” for
calculating iLISI and the value of “cell-type label” for calculating cLISI).
The probability P y,∣,xi

� 	
refers to the “relative abundance” of the

covariate y within KNN (k-nearest neighborhood) of xi. A Gaussian
kernel-based distribution of neighborhoods was used and the
perplexity was fixed to 30.

Over-correction score
We defined an over-correction score to assess the level of over-
correction problem, based on calculating the percentage of cells with
inconsistent cell-types in each cell’s neighborhood. We calculated the
over-correction score over all cells, and for each cell i we averaged the
frequency of the k-nearest neighboring cells with distinct cell-types to
the cell i (see the following equation).

over correction score= 1� 1
n*k

Xn
i = 1

Xk
j = 1

I cell typei,cell typej
� �

ð18Þ
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where n is the total cell number, k represents the k-nearest
neighbors of each cell, the cell-type of the cell i is celltypei, the cell-
type of the neighboring cell j is celltypej , and I is an indicative
function defined as:

I cell typei,cell typej
� �

=
1 if cell typei = cell typej
0 if cell typei≠cell typej

(
ð19Þ

Formally, the over-correction score is a negative index, i.e., the
higher the over-correction score, the more severe the extent of inac-
curate mixing of cell-types.

F1 score
We calculate the F1 score by the function f1_score with average=
“macro” in the scikit-learn package in Python.

Single-cell integration benchmarking (scIB)
The scores for all 12 examined metrics were calculated using the
Python package scIB50 with default parameters. The batch_correc-
tion_mean, bio_conservation_mean, and overall scores (rectangles)
were calculated as described in the work of Luecken et al.50 to assess
the performances of different methods in terms of the batch removal,
the conservation of biological variance, and the overall accuracy
scores, respectively.

Comparison with other integration methods
We compared SCALEX to nine other batch effect removal methods
(see below for specific details of each method). For each dataset as
input for all methods, we performed the same filtration, followed by
method-specific normalization, batch correction and visualization.
Note that for visual comparison, we also included the embeddings of
the raw input data,whereinweperformeddimensionality reduction by
Principal Component Analysis (PCA)84 followed by UMAP visualization
to see the batch effects. No correction function was used. All para-
meters were kept as default values.

Scanorama (v1.6). We performed the preprocessing pipelines as
stated above (as the samebelow), and used the Scanpy and scanorama
Python packages for integration. For the highly_variable_genes func-
tion, we set flavor=“seurat”, batch_key=“batch”, and n_top_-
genes=2,000. After extracting highly variable genes, we divided the
datasets according to thebatch labels and formed anew list ofdatasets
as the input for the correct_scanpy function. The integrationmatrixwas
kept for downstream analysis. All other parameters were kept their
default values.

BBKNN (v1.3.12).We used Scanpy and bbknn Python packages and
followed the suggested pipelines for integration. For the high-
ly_variable_genes function, we set flavor=“seurat”, batch_key=“batch”,
and n_top_genes=2,000. After selecting cell neighbors at the low-
dimensional space from the PCA analysis, we performed the bbknn
function with neighbors_within_batch=5, n_pcs=20, and trim=0. All
other parameters were default.

scVI (scvi-tools, v0.11): We used the scvi Python package and fol-
lowed the suggested pipelines. Batch information was added to the
VAE model by setting n_batch.

Seurat v3 (v3.2.3): We used the Seurat R package and followed the
standard integration workflow. We normalized different batches of a
dataset separately. For the FindVariableFeatures function, we set selec-
tion.method=“vst” and nfeatures=2000 to select 2000 highly variable
genes for each batch of a dataset. For the FindIntegrationAnchors
function, we set k.filter=100. All other parameters were kept at default
values. If the number of input cells in a dataset exceeded 50,000, we
employed the reciprocal PCA and reference-based integration to
improve computational efficiency.

Harmony (v1.0): We used the harmony R package. We created a
Seurat objectwith all cells and performed the standardworkflow. After

PCA, we used theRunHarmony function for integration. All parameters
were default.

Conos (v1.3.1): We used the Conos R package. For each batch of
dataset, we used the basicSeuratProc and RunTSNE functions for pre-
processing. After that, we built a joint graph using the buildGraph
function with k=30 and k.self=5. All other parameters were default.

MNN (FastMNN, v0.3.0): We used the SeuratWrappers R package.
We created a Seurat object with all cells and performed the standard
workflow. Then we used the RunFastMNN function with default para-
meters for integration.

Online iNMF and LIGER (LIGER, v1.0.0): We used the rliger R
package. For the online iNMF method, we used the online_iNMF
function with k=20, miniBatch_size=5,000 and max.epochs=5. For the
LIGER method, we used the optimizeALS function with k=20. All other
parameters were the default values. Different from other methods,
online iNMF only loads one mini-batch from the whole data in the
HDF5 file format (converted from the original data format by the rhdf5
R package) for a memory-efficient implementation; accordingly, a file
conversion issue with the down-sampled human fetal atlas dataset of
4M data size prevented online iNMF from calculating computational
efficiency with the 4M.

scJoint: We used the scJoint Python package. We pre-processed
the data into the standard input format for scJoint, and then modified
the config.py file in the scJoint package and set the same training config
parameters as used in the tutorial of “Analysis of PBMC data from 10x
Genomicsusing scJoint” (https://github.com/sydneybiox/scJoint/blob/
main/tutorial/Analysis%20of%2010xGenomics%20data%20using%
20scJoint.ipynb).

bindSC (v1.0.0): We used the bindSC R package. Following the
tutorial, we first performed dimension reductions for gene expression,
for the gene activity scores, and for the chromatin accessibility pro-
files, using the dimReduce function with K=30. Subsequently, we ran
the BiCCA function with lambda=0.5, alpha=0.5, and K=20. All other
parameters were default.

Cell-type annotation by clustering
This typeof annotationwasused for denovo annotationof a single-cell
dataset. We used a Leiden clustering85 method for cell clustering
(specifically employing the leiden function from the Python package
Scanpywith default parameters). Then for each cluster,we annotate its
cell-type based on: i) cell-type annotations of each cell in the original
study, if available, or ii) expression levels of canonical marker genes in
each cell. A majority vote strategy was used when needed. Similar to
Ren et al. 2021, we also employed a hierarchical annotation strategy,
i.e., we first clustered all cells in a dataset into several major clusters,
then for some big clusters, we further clustered them into minor
clusters respectively.

Single cell projection
We defined single cell projection as the operation to convert high-
dimensional single-cell data (e.g., gene expression profiles in scRNA-
seq or open chromatin profiles in scATAC-seq) to low-dimensional
representations in the common SCALEX cell-embedding space using
the trained encoder.

Cell-type annotation by label transfer
This type of annotation was used for annotation of a new single-cell
data batch using the annotations in a large single-cell dataset as a
reference, or for post hoc annotations of unknown cell population(s) in
a large dataset using new batches of data of known cell-types. Both
scenarios require “single cell projection” (see details below).

The basic idea of cell-type annotation by label transfer is based-on
that the same cell-types will occupy the same locations in the low-
dimensional SCALEX cell-embedding space, thus cell-type annotation
in onedata batch canbe transferred to another data batch, for the cells
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positioned at the same locations. Technically, we used the KNeigh-
borsClassifier function from the scikit-learn package to train a predic-
tion model, using the representations (in the low-dimensional cell-
embedding space) of the single-cell data with known cell-type labels as
input. We then used this model to make cell-type predictions for cells
without annotations using their representations (in the low-
dimensional cell-embedding space) as input. For comparison, label
transfer for online iNMF follows the same procedures as SCALEX by
predicting the cell-type based-on the projected locations.

Similarity matrix and confusion matrix
We used similarity matrix to evaluate the congruence of two different
batches for the same cell-types in the common cell-embedding space.
Technically, we merged all cells with the same cell-type label and cal-
culated an average representation (in the low-dimensional cell-
embedding space) for the cell-type. Thiswas repeated for all cell-types.
We then calculated the similarity matrix S = [Sij] for the cell-type
similarities of the two batches, where Sij is the Pearson correlation
coefficient between the average representation of cell-type i in data_-
batch_1 and the average representation of cell-type j in data_batch_2.

We used the confusionmatrix to evaluate the accuracy of cell-type
annotations (prediction) when a gold-standard annotation is available,
which is typical for “cell-type annotation by label transfer” (see above).
In cell-type annotation by label transfer, we predict the cell-types for a
single-cell data_batch_1, using the annotations in another data_batch_2.
When data_batch_1 was already annotated with cell-types, we can cal-
culate the confusionmatrix C=[Cij] to compare the cell-type predictions
with the existing cell-type annotations, where Cij equals the percentage
of cells known to be in cell-type i and predicted to be in cell-type j.

Generation of partially overlapping datasets
To simulate partially overlapping datasets from the pancreas dataset,
we used the pancreas_celseq2 and pancreas_smartseq2 data batches,
and worked with only six cell-types (alpha, beta, ductal, acinar, delta,
gamma). For each simulated partially overlapping dataset, we ran-
domly selected three to six cell-types from each batch, and counted
the number of the common cell-types, which was used as the indicator
for the overlapping level (whole integers, 0 to 6). We required the
union of cell-types in the newly simulated partially overlapping dataset
to cover all six cell-types.

For the PBMC dataset, we used both of the two data batches and
workedwith twelve cell-types (B, CD4T, CD4naive T, CD8T, CD8naive
T, DC, HSC, Megakaryocyte, NK, monocyte-CD14, monocyte-FCGR3A,
pDC). We used the same down-sampling strategy as for the pancreas
dataset (above).

Analysis of changes in cell-type frequency across multiple
conditions
To identify differences in cell-type frequency among the scRNA-seq
data from themild/moderate, severe, convalescent COVID-19 patients,
as well as the healthy and influenza patient controls, we applied a
Dirichlet-multinomial regression model. This model accounts for the
constraint that the cell frequencies in a scRNA-seq data are not inde-
pendent of each other. In detail, we normalized the regression coeffi-
cients to a standard normal distribution and calculated a z score, and
then conducted significance testing based on the regression model
generated by the DirichReg function in the R package Diri-
chletReg (v0.7).

Differential gene expression analysis and Gene Ontology term
enrichment analysis
Differential gene expression analysis was performed on all expressed
genes using the rank_genes_groups functionwithmethod=“t-test” in the
Scanpy package, for two certain cell-types in a COVID-19 single-cell
atlas. A gene was considered differentially expressed when a log2-fold

changewas >1 in the two conditions in comparison, and the Benjamini-
Hochberg adjusted p-value was < 0.01. The top 200 highly expressed
genes sorted by scores (implemented in Scanpy) of each cell-typewere
used as the input for GO analysis, and enriched GO terms were
acquired for each group of cells of the “GO_Biological_Process_2018”
dataset using the Python package gseapy (v0.10.1).

Inflammatory and cytokine score analysis
Wedefined the inflammatory score and the cytokine score for each cell
following Ren et al. 20217, based on the expression of a defined col-
lection of cytokine genes and inflammatory-response-related
genes (Supplementary Dataset 3). We then calculated the cytokine
and inflammatory scores from the raw gene expression profile using
the score_genes function implemented in the Scanpy.

Ablation studies using test-variants of SCALEX
To accomplish an accurate generalized encoder, the design of the full
SCALEX included the following specific innovations:
1. an asymmetric autoencoder that inputs batch information only to

the decoder (i.e., never to the encoder) (See diagram in Supple-
mentary Fig. 1);

2. a DSBN layer in the decoder to release the encoder from the
burden of capturing the batch-specific variations;

3. a mini-batching strategy that samples data from all batches
simultaneously (rather than single batches iteratively) and thus
more tightly follows the same overall distribution of the full input
dataset; this strategy includes a Batch Normalization layer in the
encoder that adjusts the deviation of each mini-batch and aligns
them to the overall input distribution.

We conducted ablation studies to investigate the contributions of
each design element of SCALEX. That is, we analyzed the performance
(for integration and projection tasks) of the full SCALEX and four
SCALEX “test-variants”, each with a distinct network architecture
(Supplementary Figs. 19–21). These can be summarized as follows:

Full SCALEX (referred as “Baseline” in the following)
This Baseline model includes an encoder without batch labeling,
sampling from all batches with Batch Normalization, decoder with
DSBN, and beta=0.5. All other ablations are compared relative to this.

Encoder with batch label
A test-variant with Baseline including an encoder with batch label as
input. We found that the integration performance of this variant is
similar with the full SCALEX, showing only a slight reduction in the
evaluation scores (Supplementary Fig. 19). However, the real issue is
this: this addition of batch information at the beginning precludes
online integration of newly arriving data. Put anotherway, this SCALEX
test-variant is not capable of integrating single-cell data in a truly
online manner.

Decoder without DSBN
A test-variant of Baseline removing the DSBN layer from decoder. The
DSBN layer combines multiple batch-specific Batch Normalization
layers to capture the batch-specific information; this approach has
been demonstrated as effective for domain adaption, as it provides a
weak alignment across different domains. We observed an obvious
drop in the integration performance (in terms of all evaluation scores)
and a slight drop in the projection performance of this SCALEX test-
variant, based-on the UMAP embeddings (Supplementary Figs. 19, 20).

Sampling by batch without the Batch Normalization (BN) layer
in the encoder
Removing the Batch Normalization layer from the encoder, and each
mini-batch is sampled by batch instead of from all the batches. The
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integration performance of this test-variant was obviously worse than
full SCALEX (Supplementary Fig. 19). The projection performance also
dropped obviously, with clear deviations from the common cell-
embedding space (Supplementary Fig. 20).

Regular autoencoder
A test-variant that uses a regular autoencoder instead of a VAE fra-
mework. This variant performed the worst among all the variants we
tested, for both the integration and projection tasks (Supplementary
Figs. 19, 20).

Note that we also explored altering the beta factor. Replacing the
beta factor as 1 instead of 0.5. The integration performance of test
variant of SCALEX forbeta factorof 1 is worse than the SCALEX for beta
factor of 1 (Supplementary Fig. 21).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analyzed in this study are publicly available; the data sources
are detailed in Supplementary Dataset 1. All other relevant data sup-
porting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding
author upon reasonable request.

Code availability
SCALEX86 is available at https://github.com/jsxlei/SCALEX. For repro-
ducibility, the scripts for benchmarks and several case studies are also
available in the above repository.
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