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Abstract

Recent advances in multi-modal single-cell sequencing technologies enable the
simultaneous profiling of chromatin accessibility and transcriptome in individual
cells. Integration analysis of multi-modal single-cell data offers a more comprehen-
sive understanding of the regulatory mechanisms linking chromatin status and gene
expression, driving cellular processes and diseases. In order to acquire features that
align peaks and genes within the same embedding space and facilitate seamless
zero-shot transfer to new data, we introduced scCLIP (single-cell Contrastive
Learning Integration Pretraining), a generalized multi-modal transformer model
with contrastive learning. We show that this model outperforms other competing
methods, and beyond this, scCLIP learns transferable features across modalities
and generalizes to unseen datasets, which pose the great potential to bridge the
vast number of unpaired unimodal datasets both existing and new data generated
in the future. Specifically, we propose the first large-scale transformer model
designed for single-cell ATAC-seq data by patching peaks across the genomes
and representing each patch as a token. This innovative approach enables us ef-
fectively to address the scalability challenges posed by scATAC-seq, even when
dealing with datasets of up to one million dimensions. Codes are provided at:
https://github.com/jsxlei/scCLIP.

1 Introduction

Single-cell sequencing techniques such as single-cell RNA sequencing (scRNA-seq) [1] for transcrip-
tomic and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) [2, 3]
for epigenomic have emerged as indispensable tools for dissecting the intricate mechanisms of cel-
lular heterogeneity and functionality in diseases and development. Recent advances in single-cell
multi-modal sequencing technologies make it possible to jointly profile chromatin accessibility
and transcriptome at the same cell [4, 5, 6]. Through computational analyses of these multi-omics
data, it becomes feasible to investigate the regulatory mechanisms governing cellular processes by
establishing links between changes in chromatin accessibility and variations in gene expression at
the single-cell resolution. However, challenges like the curse of dimensionality, the poor quality of
single-cell data especially for the scATAC-seq datasets, and the scarcity of paired multi-omics data
limit their practical potential.

Computational methods for single-cell multi-omics data have emerged, focusing on acquiring joint
embeddings for latent space alignment, modality translation, and modality matching. Notable among
these methodologies, WNN [7] applies a weighted nearest-neighbor strategy to integrate multimodal
single-cell data to obtain a total embedding for each cell. Similarly, totalVI [8] concatenates the
multi-modal data together and adopts a variational auto-encoder framework to jointly model them
with a united representation. Nonetheless, both of these approaches generate unified representations
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Figure 1: Overview of our framework. Single-cell profiles will be first processed by tokenization, and
multi-modal embedding learning is conducted with generated input embeddings. L is the training
objective as described in Equation 1.

instead of individual joint embeddings for each modality. This can potentially result in an uneven
distribution of contributions from various modalities, often leading to the dominance of scRNA-seq
data. Alternatively, LIGER [9] employs integrative non-negative matrix factorization (iNMF) to
decouple the shared and dataset-specific factors. By doing so, it optimizes the joint embeddings of
multimodal single-cell data within the shared space. In a parallel vein, BABEL [10] leverages a cross-
auto-encoder model to predict single-cell ATAC from scRNA-seq data and vice versa. However, direct
predictions of high-dimensional profiles typically prioritize highly variable features and inadvertently
lead to reduced accuracy in predicting the majority of non-highly variable features. This effect is
particularly pronounced for features that are crucial for rare cell populations. Beyond the realm of
joint embeddings and modality translation, modality matching between multi-omics data is also a
very important task, which enables querying the most similar data from the other modality. In the
NeurIPS Competition’212, CLUE [11] method based on GLUE [12] achieved the best in modality
matching task by linking different modalities using prior information and projecting multi-modal data
into the same embedding space in a supervised way. A competitive method called Novel 3 proposed
a contrastive framework and optimized bipartite graph for pairing match, which also achieved the
top results in the competition. Recently developed MatchCLOT [13] combines contrastive learning
and optimal transport match scATAC-seq and scRNA-seq also achieves good performance. However,
these methods do not exhibit scalability or transferability when confronted with large-scale datasets
of millions or even greater sizes.

In the machine learning community, Transformers [14] as a popular option has been frequently
adopted by plenty of natural language processing (NLP) and computer vision (CV) applications with
prevailing successes for large-scale pretraining [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Especially,
CLIP [25], a transformer-based multi-modal model, and its follow-up works have achieved impressive
results on image and text integration tasks by learning a superior cross-modality matching. However,
due to the high dimensionality of single-cell data, it is very difficult to tokenize the single-cell profile
into an acceptable number of tokens, there are several successful trials applying transformer to
single-cell RNA-seq datasets [26, 27, 28, 29]. the complexity and high dimensionality of scATAC-seq
data, stemming from the large number of features typically ranging from hundreds of thousands
to millions, present significant challenges in effectively harnessing Transformer models. To our
knowledge, there have been no successful applications of Transformer models on scATAC-seq data.

In this study, we introduce a pioneering solution, i.e., Contrastive Learning Integration Pre-training,
named scCLIP for multi-modal single-cell data, aiming to address these challenges head-on. Our
approach is the first feasible way to encode scATAC-seq data with Transformers to the best of our

2Multimodal Single-Cell Data Integration (https://openproblems.bio/events/2022-08_neurips/).
3Novel (https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/tree/

main/src/predict_modality/methods/novel)
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knowledge, extending the same strategy to scRNA-seq data. By joint training two transformer-based
encoders on paired multi-modal single-cell data and optimization using contrastive loss, scCLIP
demonstrates its potential in accurately projecting multi-modal data into a unified embedding space
and exhibits the capability to integrate multiple tissues and organisms at the large scale of atlas data.
This enables the integration of different modalities within a joint embedding framework and facilitates
the learning of transferable features across modalities. Overall, scCLIP represents a powerful tool for
the integration of multi-modal single-cell sequencing data. Its ability to generate joint embeddings,
promote transferability, and enable Atlas-level applications makes it a valuable asset in advancing
our understanding of complex biological systems and their underlying regulatory mechanisms.

2 Methodologies

Tokenization. Tokenization as the necessary step to deal with high-dimensional inputs plays a
crucial role in numerous successes achieved by transformer-based models [14, 30]. Inspired by the
design in [30], we customize the tokenization for single-cell profiles. Specifically, a single-cell profile
vector x ∈ RF is split into C patches and each patch is a vector in RP where F = C× P. To make
each token have biological meanings, we sorted the features of ATAC-seq along the locations on
the genomes, which means each token represents a segment of chromosome status. Note that zero
padding will be performed to make each token have the same length. Then, these patches are fed into
a transformer encoder, as indicated in Figure 1. In this way, patches from a single-cell profile are
treated the same way words/tokens in NLP applications. Meantime, an extra “classification token" is
learned as the global representation for each cell. Positional embeddings are introduced to capture
the relative positional information, where 1D positional embeddings are considered in our case.

Multi-modal Embedding Learning. Motivated by the popular cross-modal learning algorithm,
CLIP [25], we customize and propose our framework - scCLIP, as shown in Figure 1. Given a batch
of N (ATAC, RNA) pairs, scCLIP is trained to predict which of the N×N possible (ATAC, RNA)
pairings across a batch actually occurred. Vanilla transformers equipped with our tokenization are
adopted to extract ATAC and RNA features. Both obtained feature embeddings are then projected to
the latent space with an identical dimension. In this way, scCLIP learns a multi-modal embedding
space by jointly optimizing an ATAC encoder and RNA encoder.

The objective is to maximize the cosine similarity of the ATAC and RNA embeddings from the N
real pairs in the batch while minimizing the cosine similarity of the embeddings from the N2 − N
incorrect pairings. Specifically, the loss function is described as follows:

L =
1

2
× (CE(f, yATAC) + CE(g, yRNA)), (1)

where CE(·, ·) is the cross-entropy function, f and g are the embeddings from RNA and ATAC
profiles respectively, yATAC and yRNA are their corresponding pairing labels.

A Translational Matching. An extra linear mapping function is learned to project scATAC embed-
ding onto scRNA embedding space. In our case, the linear function is parameterized by a weight
matrix W and a bias vector b to capture the rotation and translation shifts respectively.

3 Experiment Results

3.1 Implementation Details

Evaluation Metrics. Following the standard in [11], we choose Matching Score and FOSCTTM
to evaluate our approaches, as depicted below.

▷ Matching Score. The average confidence in the correct pairing is determined by creating a
cross-modality matching matrix Mi,j , which is constructed by calculating the Jaccard index of
cross-modality nearest neighbors in the latent embedding space.

Mi,j =
|(Kij ∩Kjj) ∪ (Kji ∩Kii)|
|(Kij ∪Kjj) ∪ (Kji ∪Kii)|

, (2)
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where Kij represents the nearest neighbor of the sample i in the modality of a sample j.

Matching Score =
1

N

∑
i

∑
j

M̃i,j ∗ δi,j . (3)

The Matching Score (MS) is then calculated according to the formula 3, where M̃ is obtained by
normalizing the matching matrix M on a per-row basis, δi,j equals 1 if profile i and j were measured
in the same cell and 0 otherwise. N represents the total number of observations.

▷ FOSCTTM. Fraction of Samples Closer than True Match (FOSCTTM) [31]. N is the number of cells.
n
(i)
1 and n

(i)
2 denote the number of cells that are closer to the cell i, compared to their true matches in

the opposite dataset. The distance function d(·, ·) considered here is the Euclidean distance. To be
specific:

FOSCTTM =
1

2N

(
N∑

i=1

n
(i)
1

N
+

N∑
i=1

n
(i)
2

N

)
, (4)

where n
(i)
1 = |{j|d(xj , yi) < d(xi, yi)}|, n(i)

2 = |{j|d(xi, yj) < d(xi, yi)}|. Note that lower
FOSCTTM values imply higher accuracy.

▷ Adjusted Rand Index (ARI). The Rand Index (RI) computes the similarity score between two
clustering assignments by considering matched and unmatched assignment pairs independently of
the number of clusters. The Adjusted Rand Index (ARI) score is calculated by “adjust for chance”
with RI by:

ARI =
RI− Expected_RI

max(RI− Expected_RI)
(5)

▷ Normalized mutual information (NMI).

NMI =
I(P,T)√
H(P)H(T)

(6)

where P and T are empirical categorical distributions for the predicted and real clustering, I is the
mutual entropy, and H is the Shannon entropy.

▷ Silhouette Score. The silhouette score was computed by combining the average intra-cluster
distance (a) and the average nearest-cluster (b) for each cell.

Silhouette Score =
b− a

max(a− b)
(7)

▷ Batch entropy mixing score. Batch entropy mixing score was used to access the regional
mixing of cells from different batches or between reference and query datasets, with a high score
suggesting that cells from different batches are well mixed together. The batch entropy mixing score
was computed as follows:

(1) Calculate the proportion Pi of cell numbers in each batch to the total cell numbers.
(2) Randomly choose 30 cells from all batches.
(3) Calculate the 30 nearest neighbors for each randomly chosen cell.
(4) The regional mixing entropies for each cell were defined as:

p′i =

pi
Pi∑n

i=0
pi
Pi

, E =

n∑
i=0

p′ilog(p
′
i) (8)

where pi is the proportion of cells from batch i in a given region, such that
∑n

i=0 pi = 1,
p′i is a correction item to eliminate the deviation caused by the different cell numbers in
different batches. The total mixing entropy was then calculated as the sum of the regional
mixing entropies.

(5) Repeated (2)-(4) for 10 iterations with different randomly chosen cells and calculated the
average, E , as the final batch entropy mixing score.

Note that to mitigate the effect of misalignment of batch-specific cell types, we calculated the batch
entropy mixing score only based on cells from cell types that are common in different batches.
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Figure 2: Visualization of RNA and ATAC joint embedding on UMAP. Each point represents a cell,
Each point represents a cell, and only the validation data is included in the visualization. The left
panel is colored based on modality, while the right panel is colored based on cell type. The legend for
cell types is located at the bottom. Please zoom in for better readability.

Datasets Fetal Atlas. Since there is no available Atlas-level paired single-cell multi-omic data, we
instead collected single-cell atlas of fetal gene expression [32] and chromatin accessibility [33]. These
two datasets were generated from the same lab with the same organs and consistent annotations, we
manually curated a pseudo-paired dataset by randomly paired cells within the same cell annotations.
Within this dataset of 377, 134 cells, the scATAC-seq data consists of 1, 154, 464 peaks, while
the scRNA-seq data comprises 36, 601 genes. Brain. We examine our method on a paired AD
(Alzheimer’s disease) of human brain tissue dataset [34] and apply it to another paired dataset
downloaded from the 10x Genomics website4. In order to enhance the generalizability of our model,
we retain all features without selecting highly variable genes or filtering any peaks, following the
common approach employed in single-cell methods.

Transferable Evaluation To investigate the transferability, we randomly split each dataset into
training and validation with a ratio of 9 : 1, and train the scCLIP model on the paired training
datasets. Later on, the converged models are directly evaluated on the validation split and other
unseen datasets that might be paired or unpaired. During the transfer evaluation, ATAC and RNA
profiles are projected separately using the trained encoders to the same embedding space, and their
alignment consistency is measured to indicate the performance.

4https://cf.10xgenomics.com/samples/cell-arc/2.0.0/human_brain_3k/human_brain_3k_
filtered_feature_bc_matrix.h5
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Table 1: Metrics for cell type separation and modality alignment in population level. All the metrics
are calculated with UMAP embeddings. Silhouette score is used to evaluate cell separation with cell
type annotations as labels. Batch entropy mixing score is used to evaluate modality alignments with
modality information as labels. ARI and NMI are used to evaluate clustering accuracy by comparing
the Leiden cluster results with cell type annotations.

Method Silhouett score Batch entropy mixing score ARI NMI

scCLIP 0.486 0.578 0.780 0.813
CLUE 0.201 0.595 0.713 0.263

MatchCLOT 0.414 0.439 0.826 0.849
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Figure 3: Comparison of Matching Score and FOSCTTM metrics. The metrics to evaluate the
performance of scCLIP and CLUE are calculated by randomly downsampling to various sample sizes
ranging from 100 to 1000 with an interval of 100. The Matching Score, where higher values indicate
better performance, and FOSCTTM, where lower values indicate better performance. It is important
to note that as the sample size increases, the evaluated scores may decrease due to the similarity of
single-cell data within the same cell type and the data scarcity.

3.2 Experiment Results

We conducted initial validation of our model using the Fetal Atlas dataset to showcase its exceptional
scalability for Atlas-level datasets, as well as its ability to accurately cluster cell populations and
align different modalities. The evaluation results were generated using solely the validation data,
which was unseen by the model during training. In Figure 2, The UMAP visualization not only
showcases the consistent alignment of RNA and ATAC embeddings achieved by scCLIP, but also
reveals distinct separation of cell populations, with each color representing a different cell type.

When comparing scCLIP to other competing methods such as CLUE and MatchCLOT, based on the
UMAP embeddings, scCLIP attains the highest silhouette score. This signifies that scCLIP effectively
preserves biological variances by accurately separating distinct cell populations, as indicated in Table
1. Additionally, the high ARI and NMI scores further corroborate scCLIP’s proficiency in this regard.
In terms of population alignment, scCLIP also achieves comparable results to CLUE in terms of batch
entropy mixing scores between the two modalities, even though scCLIP focuses solely on optimizing
individual pairs of cells without utilizing any population-based information.

Then, we employed the Matching Score and FOSCTTM metrics to quantitatively assess the corre-
spondence between the two modalities, comparing our approach with the state-of-the-art method
CLUE. Figure 3 clearly illustrates that scCLIP consistently outperforms CLUE and MatchCLOT
across varying sample sizes, exhibiting a substantial improvement of nearly 80% improvement in
Matching Score (higher values indicate better performance) and improvements from approximately
0.08 to a more precise 0.04 in FOSCTTM (lower values indicate better performance) comparing to
CLUE and MatchCLOT.

Subsequently, we demonstrated the generalizability of our model by showcasing its ability to learn
transferable features across datasets, a capability lacking in other competing methods. Specifically,

6



Figure 4: Visualization of the joint embedding of RNA and ATAC on UMAP. (Top) The RNA
embeddings and the ATAC embeddings from AD (reference) align well. (Bottom) The embeddings
of the human_brain_3k (transferred) dataset are projected onto the same space as AD. The left panel
is colored based on modality, while the right panel is colored based on cell type. The cells of the
same cell types are represented with the same color.

we trained the model on the AD dataset and directly applied it to the human_brain_3k dataset without
the need for additional training. Figure 4 visually depicts the results, showing that the embeddings
of scATAC-seq and scRNA-seq data from the AD dataset (with validation data displayed) are well
integrated, exhibiting a good alignment between the two modalities and clear separation of cell types.
Notably, the transferred human_brain_3k data not only demonstrates strong alignment within its own
modalities and cell types but also aligns with the cell embeddings of the AD dataset. This alignment
is evident in the UMAP plot, where the AD embeddings and human_brain_3k embeddings occupy
the same positions, indicating the presence of shared or similar cell populations. These findings
indicate that our model has the ability to learn transferable features related to cell type across datasets
in both scATAC-seq and scRNA-seq.
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4 Discussion

Our experiments demonstrate that employing a patch-based tokenization approach with transformers
on single-cell profiles can yield effective representations. To the best of our knowledge, this marks the
pioneering application of the transformer model to scATAC-seq data, thus expanding the possibilities
for leveraging transformer-based approaches in single-cell analysis. Through joint optimization, we
discern transferrable features across modalities, establishing a connection to align scATAC-seq and
scRNA-seq data. This connection enables us to gain a more comprehensive understanding of the
intricate interplay between chromatin accessibility and gene expression. Additionally, by working
with Atlas-scale datasets, we are able to delve deeper into the complexities of this interplay.

Our work has certain limitations. We attempted to directly align different modalities to the same
embedding space by adjusting without the need for an additional translation layer. However, this
approach does not generalize well to all datasets, particularly smaller ones, as the model tends to
overfit in such cases. In future work, we plan to explore incorporating pre-trained models trained
on large-scale multiomics data from HuBMAP Consortium https://hubmapconsortium.org/ as
well as unimodal single-cell data and fine-tuning them using either paired datasets or unimodal data
with iteratively refined labels. Simultaneously, we will investigate a more biologically meaningful
approach to patch genes and peaks, enabling a direct link between features from different modalities
and making the transferable features more interpretable.
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